Finite Dimensional Vector Spaces

Consider the problem of finding the set of points of intersection of the two planes $ 2 x + 3 y + z + u=0$ and $ 3x + y + 2z + u= 0.$
Let $ V$ be the set of points of intersection of the two planes. Then $ V$ has the following properties:

  1. The point $ (0,0,0,0)$ is an element of $ V.$
  2. For the points $ (-1,0,1,1)$ and $ (-5,1,7,0)$ which belong to $ V;$ the point $ (-6, 1, 8,1) = (-1,0,1,1)+(-5,1,7,0) \in V.$
  3. Let $ {\alpha}\in {\mathbb{R}}.$ Then the point $ {\alpha}(-1,0,1,1) = (-{\alpha}, 0, {\alpha}, {\alpha}) $ also belongs to $ V.$

Similarly, for an $ m \times n$ real matrix $ A,$ consider the set $ V,$ of solutions of the homogeneous linear system $ A {\mathbf x}= {\mathbf 0}.$ This set satisfies the following properties:

  1. If $ A {\mathbf x}= {\mathbf 0}$ and $ A {\mathbf y}= {\mathbf 0},$ then $ {\mathbf x}, {\mathbf y}\in V.$ Then $ {\mathbf x}+ {\mathbf y}\in V$ as $ A ({\mathbf x}+ {\mathbf y}) = A {\mathbf x}+ A {\mathbf y}= {\mathbf 0}+ {\mathbf 0}= {\mathbf 0}.$ Also, $ {\mathbf x}+ {\mathbf y}= {\mathbf y}+ {\mathbf x}.$
  2. It is clear that if $ {\mathbf x}, {\mathbf y}, {\mathbf z}\in V$ then $ ({\mathbf x}+{\mathbf y})+{\mathbf z}= {\mathbf x}+({\mathbf y}+{\mathbf z}).$
  3. The vector $ {\mathbf 0}\in V$ as $ A {\mathbf 0}= {\mathbf 0}.$
  4. If $ A {\mathbf x}= {\mathbf 0}$ then $ A (-{\mathbf x}) = - A {\mathbf x}= {\mathbf 0}.$ Hence, $ -{\mathbf x}\in V.$
  5. Let $ {\alpha}\in {\mathbb{R}}$ and $ {\mathbf x}\in V.$ Then $ {\alpha}{\mathbf x}\in V$ as $ A ({\alpha}{\mathbf x}) = {\alpha}A {\mathbf x}= {\mathbf 0}.$

Thus we are lead to the following.



Subsections
A K Lal 2007-09-12