Examples

EXAMPLE 3.1.4  
  1. The set $ {\mathbb{R}}$ of real numbers, with the usual addition and multiplication (i.e., $ \oplus \equiv +$ and $ \odot \equiv \cdot$ ) forms a vector space over $ {\mathbb{R}}.$
  2. Consider the set $ {\mathbb{R}}^2 = \{(x_1,x_2): x_1, x_2 \in {\mathbb{R}}\}.$ For $ x_1, x_2, y_1, y_2 \in {\mathbb{R}}$ and $ {\alpha}\in {\mathbb{R}},$ define,

    $\displaystyle (x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 + y_2) \hspace{.05...
...x{ and }} \hspace{.05in} {\alpha}\odot (x_1, x_2) = ({\alpha}x_1, {\alpha}x_2).$

    Then $ {\mathbb{R}}^2$ is a real vector space.
  3. Let $ {\mathbb{R}}^n= \{(a_1, a_2, \ldots, a_n) : a_i \in {\mathbb{R}}, 1 \leq i \leq n \},$ be the set of $ n$ -tuples of real numbers. For $ {\mathbf u}=(a_1,
\ldots, a_n), \; {\mathbf v}= (b_1, \ldots, b_n)$ in $ V$ and $ {\alpha}\in {\mathbb{R}},$ we define

    $\displaystyle {\mathbf u}\oplus {\mathbf v}= (a_1 + b_1, \ldots, a_n + b_n) \; {\mbox{ and }} \;
\alpha \odot{\mathbf u}=
(\alpha a_1, \ldots, \alpha a_n)$

    (called component wise or coordinate wise operations). Then $ V$ is a real vector space with addition and scalar multiplication defined as above. This vector space is denoted by $ {\mathbb{R}}^n,$ called the real vector space of $ n$ -tuples.
  4. Let $ V = {\mathbb{R}}^{+} $ (the set of positive real numbers). This is NOT A VECTOR SPACE under usual operations of addition and scalar multiplication (why?). We now define a new vector addition and scalar multiplication as

    $\displaystyle {\mathbf v}_1 \oplus {\mathbf v}_2 = {\mathbf v}_1 \cdot {\mathbf v}_2 \; {\mbox{ and }}
\; \alpha \odot {\mathbf v}= {\mathbf v}^{\alpha}$

    for all $ {\mathbf v}_1, {\mathbf v}_2, {\mathbf v}\in {\mathbb{R}}^{+}$ and $ \alpha \in {\mathbb{R}}.$ Then $ {\mathbb{R}}^{+}$ is a real vector space with $ 1$ as the additive identity.
  5. Let $ V = \{(x,y) \; : x, y \in {\mathbb{R}}\}.$ Define $ (x_1,x_2) \oplus (y_1,y_2) = (x_1+y_1+1, x_2+y_2 -3), \;\; \alpha
\odot (x_1,x_2) = (\alpha x_1+ \alpha - 1, \alpha x_2 - 3 \alpha +
3)$ for $ (x_1,x_2), (y_1,y_2) \in {\mathbb{R}}^2$ and $ \alpha \in {\mathbb{R}}.$ Then it can be easily verified that the vector $ (-1, 3)$ is the additive identity and $ V$ is indeed a real vector space.




    Recall $ \sqrt{-1}$ is denoted $ i.$

  6. Consider the set $ {\mathbb{C}}= \{x+ i y : x, y \in {\mathbb{R}}\}$ of complex numbers.
    1. For $ x_1+ i y_1, x_2+ i y_2 \in {\mathbb{C}}$ and $ {\alpha}\in {\mathbb{R}},$ define,
      $\displaystyle (x_1+ i y_1 ) \oplus (x_2+ i y_2)$ $\displaystyle =$ $\displaystyle (x_1 + x_2) +
i (y_1 + y_2) \;\; {\mbox{ and }}$  
      $\displaystyle {\alpha}\odot (x_1 + i y_1)$ $\displaystyle =$ $\displaystyle ({\alpha}x_1) + i ({\alpha}y_1).$  

      Then $ {\mathbb{C}}$ is a real vector space.
    2. For $ x_1+ i y_1, x_2+ i y_2 \in {\mathbb{C}}$ and $ {\alpha}+ i \beta \in {\mathbb{C}},$ define,
      $\displaystyle (x_1+ i y_1 ) \oplus (x_2+ i y_2)$ $\displaystyle =$ $\displaystyle (x_1 + x_2) + i (y_1 + y_2)
\hspace{.05in} {\mbox{ and }}$  
      $\displaystyle ({\alpha}+ i \beta) \odot (x_1 + i y_1)$ $\displaystyle =$ $\displaystyle ({\alpha}x_1 - \beta y_1) + i ({\alpha}y_1 + \beta x_1).$  

      Then $ {\mathbb{C}}$ forms a complex vector space.
  7. Consider the set $ {\mathbb{C}}^n = \{(z_1, z_2, \ldots, z_n) : z_i \in
{\mathbb{C}} {\mbox{ for }} 1 \leq i \leq n\}.$ For $ (z_1,
\ldots, z_n), (w_1, \ldots, w_n) \in {\mathbb{C}}^n$ and $ {\alpha}\in {\mathbb{F}},$ define,
    $\displaystyle (z_1, \ldots, z_n) \oplus (w_1, \ldots, w_n)$ $\displaystyle =$ $\displaystyle (z_1 + w_1, \ldots, z_n+ w_n) \hspace{.05in} {\mbox{ and }}$  
    $\displaystyle {\alpha}\odot (z_1, \ldots, z_n)$ $\displaystyle =$ $\displaystyle ({\alpha}z_1, \ldots, {\alpha}z_n).$  

    1. If the set $ {\mathbb{F}}$ is the set $ {\mathbb{C}}$ of complex numbers, then $ {\mathbb{C}}^n$ is a complex vector space having $ n$ -tuple of complex numbers as its vectors.

    2. If the set $ {\mathbb{F}}$ is the set $ {\mathbb{R}}$ of real numbers, then $ {\mathbb{C}}^n$ is a real vector space having $ n$ -tuple of complex numbers as its vectors.

    Remark 3.1.5   In Example 7a, the scalars are Complex numbers and hence $ i (1, 0) = (i, 0).$ Whereas, in Example 7b, the scalars are Real Numbers and hence WE CANNOT WRITE $ i (1, 0) = (i, 0).$

  8. Fix a positive integer $ n$ and let $ M_n({\mathbb{R}})$ denote the set of all $ n \times n$ matrices with real entries. Then $ M_n({\mathbb{R}})$ is a real vector space with vector addition and scalar multiplication defined by

    $\displaystyle A \oplus B = [a_{ij}] \oplus [b_{ij}] = [ a_{ij} + b_{ij}], \;\hspace{1in} \alpha \odot A = \alpha \odot [a_{ij}] = [ \alpha a_{ij}].$

  9. Let $ M_2({\mathbb{C}})$ denote the set of all $ 2 \times 2$ matrices with complex entries. Then $ M_2({\mathbb{C}})$ is a real vector space as well as a complex vector sapce with vector addition and scalar multiplication defined by

    $\displaystyle A \oplus B = \begin{bmatrix}a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} ...
...n{bmatrix}{\alpha}a_1 & {\alpha}a_2 \\ {\alpha}a_3 & {\alpha}a_4 \end{bmatrix}.$

  10. Fix a positive integer $ n.$ Consider the set, $ {\cal P}_n({\mathbb{R}}),$ of all polynomials of degree $ \leq n$ with coefficients from $ {\mathbb{R}}$ in the indeterminate $ x.$ Algebraically,

    $\displaystyle {\cal P}_n({\mathbb{R}})= \{
a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n : a_i \in {\mathbb{R}}, 0 \leq i \leq n \}.$

    Let $ f(x), g(x)
\in {\cal P}_n({\mathbb{R}}).$ Then $ f(x) = a_0 + a_1 x + a_2 x^2 +
\cdots + a_n x^n$ and $ g(x) = b_0 + b_1 x + b_2 x^2 + \cdots +
b_n x^n$ for some $ a_i, b_i \in {\mathbb{R}},$ $ 0 \leq i \leq
n.$ It can be verified that $ {\cal P}_n({\mathbb{R}})$ is a real vector space with the addition and scalar multiplication defined by:
    $\displaystyle f(x) \oplus g(x)$ $\displaystyle =$ $\displaystyle (a_0 + b_0) + (a_1 +
b_1) x + \cdots + (a_n + b_n) x^n, \; {\mbox{ and}}$  
    $\displaystyle \alpha \odot f(x)$ $\displaystyle =$ $\displaystyle \alpha a_0 + \alpha a_1 x +
\cdots + \alpha a_n x^n \;\; {\mbox{ for }} \alpha \in {\mathbb{R}}.$  

  11. Consider the set $ {\cal P}({\mathbb{R}}),$ of all polynomials with real coefficients. Let $ f(x), g(x) \in {\cal P}({\mathbb{R}}).$ Observe that a polynomial of the form $ a_0 + a_1 x + \cdots + a_m x^m$ can be written as $ a_0 + a_1 x + \cdots + a_m x^m + 0 \cdot x^{m+1} +
\cdots + 0 \cdot x^p$ for any $ p > m.$ Hence, we can assume $ f(x)
= a_0 + a_1 x + a_2 x^2 + \cdots + a_p x^p$ and $ g(x) = b_0 + b_1
x + b_2 x^2 + \cdots + b_p x^p$ for some $ a_i, b_i \in {\mathbb{R}},$ $ 0 \leq i \leq p,$ for some large positive integer $ p.$ We now define the vector addition and scalar multiplication as
    $\displaystyle f(x) \oplus g(x)$ $\displaystyle =$ $\displaystyle (a_0 + b_0) + (a_1 +
b_1) x + \cdots + (a_p + b_p) x^p, \; {\mbox{ and}}$  
    $\displaystyle \alpha \odot f(x)$ $\displaystyle =$ $\displaystyle \alpha a_0 + \alpha a_1 x +
\cdots + \alpha a_p x^p \;\; {\mbox{ for }} \alpha \in {\mathbb{R}}.$  

    Then $ {\cal P}({\mathbb{R}})$ forms a real vector space.

    Suppose that $ {\cal P}({\mathbb{C}})$ is the set of all polynomials with complex coefficients, then with respect to the operations similar to what has been defined above, the set $ {\cal P}({\mathbb{C}})$ is a real vector space. If we allow the scalars to be complex numbers then $ {\cal P}({\mathbb{C}})$ becomes a complex vector space.

  12. Let $ C([-1,1])$ be the set of all real valued continuous functions on the interval $ [-1, 1].$ For $ f , g \in C([-1,1])$ and $ \alpha \in
{\mathbb{R}},$ define
    $\displaystyle (f \oplus g ) (x)$ $\displaystyle =$ $\displaystyle f(x) + g (x), \; {\mbox{ and }}$  
    $\displaystyle (\alpha \odot f) (x)$ $\displaystyle =$ $\displaystyle \alpha f(x), \; {\mbox{for all }} \;
x \in [-1,1].$  

    Then $ C([-1,1])$ forms a real vector space. The operations defined above are called POINT WISE ADDITION AND SCALAR MULTIPLICATION.

  13. Let $ V$ and $ W$ be real vector spaces with binary operations $ (+, \bullet)$ and $ (\oplus, \odot),$ respectively. Consider the following operations on the set $ V \times W:$ for $ ({\mathbf x}_1, {\mathbf y}_1), ({\mathbf x}_2, {\mathbf y}_2)
\in V \times W$ and $ {\alpha}\in {\mathbb{R}},$ define
    $\displaystyle ({\mathbf x}_1, {\mathbf y}_1) \oplus^{\prime} ({\mathbf x}_2, {\mathbf y}_2)$ $\displaystyle =$ $\displaystyle ({\mathbf x}_1 + {\mathbf x}_2, {\mathbf y}_1 \oplus {\mathbf y}_2), \; {\mbox{ and}}$  
    $\displaystyle {\alpha}\circ ({\mathbf x}_1, {\mathbf y}_1)$ $\displaystyle =$ $\displaystyle ({\alpha}\bullet {\mathbf x}_1, {\alpha}\odot {\mathbf y}_1).$  

    On the right hand side, we write $ {\mathbf x}_1 + {\mathbf x}_2$ to mean the addition in $ V,$ while $ {\mathbf y}_1 \oplus {\mathbf y}_2$ is the addition in $ W.$ Similarly, $ {\alpha}\bullet {\mathbf x}_1$ and $ {\alpha}\odot {\mathbf y}_1$ come from scalar multiplication in $ V$ and $ W,$ respectively. With the above definitions, $ V \times W$ also forms a real vector space.
The readers are advised to justify the statements made in the above examples.

From now on, we will use ` $ {\mathbf u}+{\mathbf v}$ ' in place of ` $ {\mathbf u}\oplus {\mathbf v}$ ' and ` $ \alpha \cdot {\mathbf u}$ or $ \alpha {\mathbf u}$ ' in place of ` $ \alpha \odot {\mathbf u}$ '.

A K Lal 2007-09-12