Subspaces

DEFINITION 3.1.6 (Vector Subspace)   Let $ S$ be a NON-EMPTY SUBSET of $ V.$ $ S ({\mathbb{F}})$ is said to be a subspace of $ V ({\mathbb{F}})$ if $ \alpha {\mathbf u}+ \beta {\mathbf v}\in S$ whenever $ \alpha, \beta \in {\mathbb{F}}$ and $ {\mathbf u}, {\mathbf v}\in S;$ where the vector addition and scalar multiplication are the same as that of $ V
({\mathbb{F}}).$

Remark 3.1.7   Any subspace is a vector space in its own right with respect to the vector addition and scalar multiplication that is defined for $ V
({\mathbb{F}}).$

EXAMPLE 3.1.8  
  1. Let $ V ({\mathbb{F}})$ be a vector space. Then
    1. $ S = \{{\mathbf 0}\},$ the set consisting of the zero vector $ {\mathbf 0},$
    2. $ S = V$
    are vector subspaces of $ V.$ These are called trivial subspaces.
  2. Let $ S = \{(x,y,z)\in {\mathbb{R}}^3 : x + y - z = 0 \}.$ Then $ S$ is a subspace of $ {\mathbb{R}}^3.$ ($ S$ is a plane in $ {\mathbb{R}}^3$ passing through the origin.)
  3. Let $ S =
\{(x,y,z) \in {\mathbb{R}}^3 : x + y + z = 3 \}.$ Then $ S$ is not a subspace of $ {\mathbb{R}}^3.$ ($ S$ is again a plane in $ {\mathbb{R}}^3$ but it doesn't pass through the origin.)
  4. Let $ S =
\{(x,y,z) \in {\mathbb{R}}^3: z=x \}.$ Then $ S$ is a subspace of $ {\mathbb{R}}^3.$
  5. The vector space $ {\cal P}_n({\mathbb{R}})$ is a subspace of the vector space $ {\cal P}({\mathbb{R}}).$
  6. Conisder the vector space $ V$ given in Example 5. Let $ W=\{(x,0) \; : x \in {\mathbb{R}}\}.$ Then check that

    $\displaystyle (x,0) \oplus (y,0) = (x+y+1, -3) \not\in W.$

    Hence $ W$ is not a subspace of $ V$ .

    But if we think of $ W$ as a subset of the real vector space $ {\mathbb{R}}^2$ (component wise addition and scalar multiplication), then $ W$ is a subspace. Check that $ W=\{(x, 3) \; : x \in {\mathbb{R}}\}$ is a subspace of $ V$ ($ W$ represents a line passing through the point $ (-1, 3)$ , the zero vector of $ V$ ).

  7. Consider the set $ M_2({\mathbb{C}})$ given in Example 9. Then $ M_2({\mathbb{C}})$ is a real as well as a complex vector space Let $ W = \left\{ \begin{bmatrix}a & b \\ c & d \end{bmatrix} \; : a = \overline{d} \right\}$ be a subset of $ M_2({\mathbb{C}})$ . Then verify that $ W$ is a vector subspace of the real vector space $ M_2({\mathbb{C}})$ . The reason being the following: the condition $ a = \overline{d}$ implies that for any scalar $ {\alpha}, \; {\alpha}= \overline{{\alpha}}$ , as

    $\displaystyle {\alpha}a = \overline{{\alpha}d} = \overline{{\alpha}} \overline{d} = \overline{{\alpha}} a.$

EXERCISE 3.1.9  
  1. Let $ V$ be the set of all real numbers. Define the addition in $ V$ by $ x \oplus y = x + y -2$ and the scalar multiplication by $ {\alpha}\odot x = {\alpha}(x-2) + 2.$ Prove that $ V$ is a real vector space with respect to the operations defined above.
  2. Which of the following are correct statements?
    1. Let $ S = \{(x,y,z)\in {\mathbb{R}}^3 : z = x^2 \}.$ Then $ S$ is a subspace of $ {\mathbb{R}}^3.$
    2. Let $ V ({\mathbb{F}})$ be a vector space. Let $ {\mathbf x}\in V.$ Then the set $ \{{\alpha}{\mathbf x}: {\alpha}\in {\mathbb{F}}\}$ forms a vector subspace of $ V.$
    3. Let $ W = \{ f \in C([-1,1])
: f(1/2) = 0\}.$ Then $ W$ is a subspace of the real vector space, $ C([-1,1]).$
  3. Which of the following are subspaces of $ {\mathbb{R}}^n ({\mathbb{R}})$ ?
    1. $ \{(x_1, x_2, \ldots, x_n ) : x_1 \geq 0 \}.$
    2. $ \{(x_1, x_2, \ldots, x_n ) : x_1 + 2 x_2 = 4 x_3 \}.$
    3. $ \{(x_1, x_2, \ldots, x_n ) : x_1 {\mbox{is rational }} \}.$
    4. $ \{(x_1, x_2, \ldots, x_n ) : x_1 = x_3^2 \}.$
    5. $ \{(x_1, x_2, \ldots, x_n ) : {\mbox{either }} x_1 \;
{\mbox{ or }} x_2 {\mbox{ or both is}} 0 \}.$
    6. $ \{(x_1, x_2, \ldots, x_n ) : \vert x_1\vert \leq 1 \}.$
  4. Which of the following are subspaces of $ \; i) {\mathbb{C}}^n ({\mathbb{R}}) \; \; ii)
{\mathbb{C}}^n ({\mathbb{C}})$ ?
    1. $ \{(z_1, z_2, \ldots, z_n) : z_1 {\mbox{is real }} \}.$
    2. $ \{(z_1, z_2, \ldots, z_n) : z_1 + z_2 = {\overline{z_3}} \}.$
    3. $ \{(z_1, z_2, \ldots, z_n) : \mid z_1 \mid = \mid z_2 \mid \}.$

A K Lal 2007-09-12