Miscellaneous Exercises

EXERCISE 2.7.1  
  1. Let $ A$ be an orthogonal matrix. Show that $ \det A = \pm 1.$
  2. If $ A$ and $ B$ are two $ n \times n$ non-singular matrices, are the matrices $ A + B$ and $ \;A - B$ non-singular? Justify your answer.
  3. For an $ n \times n$ matrix $ A,$ prove that the following conditions are equivalent:
    1. $ A$ is singular ($ A^{-1}$ doesn't exist).
    2. rank $ (A)
\neq n.$
    3. $ \det (A) =
0.$
    4. $ A$ is not row-equivalent to $ I_n,$ the identity matrix of order $ n.$
    5. $ A {\mathbf x}= {\mathbf 0}$ has a non-trivial solution for some $ {\mathbf x}$ (that is, there exist $ x_1, x_2, \ldots, x_n$ not all zero, such that $ A \; [x_1 \; x_2 \; \cdots \; x_n]^t = {\mathbf 0}$ ).
    6. $ A {\mathbf x}= b$ doesn't have a unique solution, i.e., it has no solutions or it has infinitely many solutions.
  4. Let $ A = \begin{bmatrix}2 & 0 & 6 & 0 & 4 \\ 5
& 3 & 2 & 2 & 7 \\ 2 & 5 & 7 & 5 & 5 \\ 2 & 0 & 9 & 2 & 7 \\ 7 & 8
& 4 & 2 & 1 \end{bmatrix}.$ We know that the numbers $ 20604, 53227, $ $ 25755, 20927$ and $ 78421$ are all divisible by $ 17.$ Does this imply $ 17$ divides $ \det (A)$ ?
  5. Let $ A = [a_{ij}]_{n \times n}$ where $ a_{ij} = x^{j-1}_{i}.$ Show that $ \;\; \det (A) = \prod\limits_{1\le i < j\le n} (x_{j} - x_{i}).$ [The matrix $ A$ is usually called the Van-dermonde matrix.]
  6. Let $ A=[a_{ij}]$ with $ a_{ij} = \max\{i,j\}$ be an $ n \times n$ matrix. Compute $ \det A.$
  7. Let $ A=[a_{ij}]$ with $ a_{ij} = {1 / {(i+j)}}$ be an $ n \times n$ matrix. Show that $ A$ is invertible.
  8. Solve the following system of equations by Cramer's rule.
    $ i) \; x + y + z - w = 1,
\; x + y - z + w = 2, $ $ \;2 x + y + z - w = 7, \; x + y + z + w
= 3.$
    $ ii) \; x - y + z - w = 1, \; x + y - z + w = 2, $ $ \; 2
x + y - z - w = 7, \; x - y - z + w = 3.$
  9. Suppose $ A=[a_{ij}]$ and $ B= [b_{ij}]$ are two $ n \times n$ matrices such that $ b_{ij} = p^{i-j} a_{ij}$ for $ 1 \le i, j \le n$ for some non-zero real number $ p$ . Then compute $ \det(B)$ in terms of $ \det (A)$ .
  10. The position of an element $ a_{ij}$ of a determinant is called even or odd according as $ i + j$ is even or odd. Show that
    1. If all the entries in odd positions are multiplied with $ -1$ then the value of the determinant doesn't change.
    2. If all entries in even positions are multiplied with $ -1$ then the determinant
      1. does not change if the matrix is of even order.
      2. is multiplied by $ -1$ if the matrix is of odd order.
  11. Let $ A$ be an $ n \times n$ Hermitian matrix, that is, $ A^{*} = A.$ Show that $ \det A$ is a real number. [$ A$ is a matrix with complex entries and $ A^{*} = \overline{A^{t}}.$ ]
  12. Let $ A$ be an $ n \times n$ matrix. Then show that

    $\displaystyle A
{\mbox{ is invertible}} \Longleftrightarrow Adj (A) {\mbox{ is invertible}}.$

  13. Let $ A$ and $ B$ be invertible matrices. Prove that $ {\mbox{Adj}}(AB) = {\mbox{Adj}}(B)
{\mbox{Adj}}(A).$
  14. Let $ P= \begin{bmatrix}A & B \\ C & D
\end{bmatrix}$ be a rectangular matrix with $ A$ a square matrix of order $ n$ and $ \vert A\vert \neq 0.$ Then show that $ {\mbox{ rank }}(P) = n$ if and only if $ D = C A^{-1} B.$

A K Lal 2007-09-12