Module 1 : Real Numbers, Functions and Sequences
Lecture 1 : Real Numbers, Functions    [ Section 1.2 : Functions ]
 
  Practice Exercises : Functions
(1)




Let     be any set. For a subset    of  ,  the indicator function of   , denoted by , is the function
        defined by
                                                  .         
  Prove the following statements for    :        
(i)
.
(ii)
.         
(iii)
.
(2)


Let be defined by
                 .          
  Show that is a one-one function. Is it onto also?
( This shows that the set  x  has as many points as  has ! )
(3)


Let  .  For any set , let  .
The set  is called the preimage of .  
Prove the following:  For,     
(a)
 .     
(b)
.
(c)
.  
(d)
 is one one if and only if for every ,    is at most a singleton set.
(e)
If  , then   need not be onto.
14