Module 2 : Electrostatics
Lecture 9 : Electrostatic Potential
  and
\begin{eqnarray*}
E_z &=& -\frac{\partial}{\partial z}\left[\frac{pz}{4\pi\epsil...
...+z^2)^{5/2}}\\
&=& \frac{p}{4\pi\epsilon_0}\frac{2z^2-y^2}{r^5}
\end{eqnarray*}
B.
POLAR COORDINATES
  In polar ( $r-\theta$) coordinates, the radial and tangential components of the field are as follows :
 
\begin{eqnarray*}
E_r &=& -\frac{\partial \phi}{\partial r} = \frac{2p\cos\theta...
...l \phi}{\partial \theta} = \frac{p\sin\theta}{4\pi\epsilon_0r^3}
\end{eqnarray*}
   
7