Module 1 : A Crash Course in Vectors
Lecture 5 : Curl of a Vector - Stoke's Theorem
  Expression for curl in Cylidrical and Spherical Coordinates :
  In the cylindrical coordinates the curl is given by
\begin{eqnarray*} \nabla\times\vec F &=& \left(\frac{1}{\rho}\frac{\partial F_z... ...frac{1}{\rho}\frac{\partial F_\rho}{\partial\theta}\right)\hat k \end{eqnarray*}
  In the spherical coordinates the corresponding expression for the curl is
 
\begin{eqnarray*} \nabla\times\vec F &=& \frac{1}{r\sin\theta}\left(\frac{\part... ...(r F_\theta)- \frac{\partial F_r}{\partial\theta}\right)\hat\phi \end{eqnarray*}
   
8