Module 1 : A Crash Course in Vectors
Lecture 6 : Laplacian
\includegraphics{fig1.36.eps}
   
  One can easily extend the definition to three dimensions
 
\begin{displaymath}\delta(\vec r) = \delta(x)\delta(y)\delta(z)\end{displaymath}
  which has the property
 
\begin{displaymath}\int f(\vec r)\delta(\vec r-\vec a)= f(\vec a)\end{displaymath}
  provided, of course, the range of integration includes the point $\vec r = \vec a$.
   
13