Module 2 : Modeling Discrete Time Systems by Pulse Transfer Function

Lecture 3 : Pluse Transfer Function

Laplace transform of sampled signal r*(t) is

$\displaystyle R^{*}(s)=\frac{e^{Ts}}{e^{Ts}-e^{-aT}}$

Laplace transform of the output after the ZOH is

$\displaystyle H(s)$
$\displaystyle =$ $\displaystyle G_{ho}(s)R^{*}(s)$  
  $\displaystyle =$ $\displaystyle \frac{1-e^{-Ts}}{s} \cdot \frac{e^{Ts}}{e^{Ts}-e^{-aT}}$  


When T 0 ,

$\displaystyle \lim_{T\rightarrow 0}H(s)=\lim_{T\rightarrow 0}\frac{1-e^{-Ts}}{s}\frac{e^{Ts}}{e^{Ts}-e^{-aT}}$

The limit can be calculated using L' hospital's rule. It says that:

$ $
If $ \displaystyle \lim_{x\rightarrow a}f(x)=0/\infty$ and if $ \displaystyle \lim_{x\rightarrow a} g(x)=0/\infty$, then

$\displaystyle \lim_{x\rightarrow a} \frac {f(x)}{g(x)}=\lim_{x\rightarrow a}\frac {f^{'}(x)}{g^{'}(x)}$

For the given example, x = T, $ f(T)=\dfrac{1-e^{-Ts}}{s}$ and $ g(T)=\dfrac{e^{Ts}-e^{-aT}}{e^{Ts}}$. Both the expressions approach zero as T 0. So,

$\displaystyle H(s)$
$\displaystyle =$ $\displaystyle \lim_{T\rightarrow 0} \frac {f(T)}{g(T)}$  
  $\displaystyle =$ $\displaystyle \lim_{T\rightarrow 0} \frac {f^{'}(T)}{g^{'}(T)}$  
  $\displaystyle =$ $\displaystyle \lim_{T\rightarrow 0} \frac{e^{Ts}}{(s+a)e^{-T(s+a)}}$  
  $\displaystyle =$ $\displaystyle \frac{1}{s+a}$  
  $\displaystyle =$ $\displaystyle R(s)$  

which implies that the original signal can be recovered from the output of the sample and hold device if the sampling period approaches zero.