Module 2 : Modeling Discrete Time Systems by Pulse Transfer Function

Lecture 3 : Pluse Transfer Function

One can then write:

$\displaystyle C^{*}(s)$
$\displaystyle =$ $\displaystyle \sum_{k=0}^{\infty}c(kT)e^{-kTs}$  

Since c(kT) is periodic,

$\displaystyle \; C^{*}(s)$



$\displaystyle =$


$\displaystyle \frac{1}{T} \sum_{n=-\infty}^{\infty}c(s+jnw_{s}) \;\;$   with c(0) = 0
 

The detailed derivation of the above expression is omitted. Similarly,


$\displaystyle R^{*}(s)$

$\displaystyle =$
$\displaystyle \frac{1}{T} \sum_{n=-\infty}^{\infty}R(s+jnw_{s})$  
Again, 
$\displaystyle \; C^{*}(s)$

$\displaystyle =$
$\displaystyle \frac{1}{T} \sum_{n=-\infty}^{\infty}c(s+jnw_{s})$  
  $\displaystyle =$ $\displaystyle \frac{1}{T} \sum_{n=-\infty}^{\infty}R^*(s+jnw_{s})G(s+jnw_{s})$  

Since R*(s) is periodic R*( s + jnws ) = R*(s). Thus


$\displaystyle C^{*}(s)$

$\displaystyle =$
$\displaystyle \frac{1}{T}\sum_{n=-\infty}^{\infty}R^{*}(s)G(s+jnw_{s})$  
 
$\displaystyle =$
$\displaystyle R^{*}(s) \frac{1}{T}\sum_{n=-\infty}^{\infty}G(s+jnw_{s})$  

If we define

$ G^{*}(s)= \displaystyle
\frac{1}{T}\sum_{n=-\infty}^{\infty}G(s+jnw_{s})$, then $ C^{*}(s)=R^{*}(s)G^{*}(s)$.

$\displaystyle G^{*}(s)=\frac{C^*(s)}{R^*(s)} $

is known as pulse transfer function. Sometimes it is also referred to as the starred transfer function.

If we now substitute z = eTs in the previous expression, we will directly get the z-transfer function G(z) as


$\displaystyle G(z)$

$\displaystyle =$
$\displaystyle \frac {C(z)}{R(z)}$