Module 2 : Limits and Continuity of  Functions
Lecture 4 : Limit at a point
4.1 .6
 Definition :
 
Let  be an open interval of . A real number  is called an  limit of as  x tends to if the following hold: given any real number , there exists some such that

.
Such a , whenever it exists, is unique (see excercise 3 ) and is denoted by  .

Click here to see an interactive visualization: Applet 2.3

Let us look at some examples.
4.1 .7 
Examples :
  (i) Let   if   and  . Then,  .  Indeed,
                                     .
We find an upper bound for when x is close to 2 , say , that is . Then,
                                     
Thus, given any , we may take and then,
                                     .
7