Module 2 : Limits and Continuity of  Functions
Lecture 4 : Limit at a point
   
5.
Let  be such that for some . Does this imply that    
  exists? Analyze the converse.
6.  Let
    
 

where  are real numbers with  . Show that

  and that   if  and while  if  and   .  

7. Let  for all  , where . If , show that .
   
8. Let and . Prove that if , then there is some  such that
       for all .
14