Module 2 : Limits and Continuity of  Functions
Lecture 4 : Limit at a point
 
Practice Exercises : Limits of Functions
 

1. For the following functions , given ,  find some  such that ,
     whenever    , where
(i) .
(ii) .
(iii) .
(iv) 

2.    Do the following limits exist? If so, find them.
(i)          (ii)       (iii)        (iv)          (v) .

3.     Show that limit of a function is unique whenever it exists.

4.      Let be such that . Prove or disprove the following statements:
(i)       .
(ii)     , if g is bounded on for some .
(iii)     , if exists.

13