Module II : Analysis and design of concrete pavements
Lecture 2 : Analysis of Concrete Pavement
 
Solutions for load stress

The following are various solutions for load stress obtained by various researchers.

  • Interior stress due to loading at interior (Westergaard 1926)
  • Edge stress due to loading at edge (Westergaard 1926
  • Corner stress due to loading at corner (Bradbury 1938, Fwa et al. 1996, Westergaard 1926)

 

 

 

Interior stress due to loading at interior (Westergaard 1926)

\begin{eqnarray*}  \sigma_{i,max} &=& \frac{3P(1+\mu)}{2 \pi h^2} \left[ \ln \lef...  ...ight)+ \gamma -  1.25\right)\right]\;\;;\mbox{Westergaard (1926)}  \end{eqnarray*}

 

 

 

 

Edge stress due to loading at edge (Westergaard 1926)

 

\begin{eqnarray*}  \sigma_{e,max} &=& \frac{3P(1+\mu)}{\pi(3+\mu) h^2} \left[ \ln...  ... \left( \frac{a}{l}\right)  \right]\;\;;\mbox{Westergaard (1926)}  \end{eqnarray*}

 

 

 

 

Corner stress due to loading at corner (Bradbury 1938, Fwa et al. 1996, Westergaard 1926)

\begin{eqnarray*}  \sigma_{c,max} &=& \frac{3P}{h^2}\left[1-\left( \frac{1.4142a}...  ...left[ 1- \frac{\sqrt 2 a}{l}  \right] \;\;;\mbox{Spangler (1942)}  \end{eqnarray*}

where, radius of resisting section, $b=[1.6a^2+h^2]^{0.5} -  0.675h$ ; if    $a \le 1.724h$ or $b=a$ ; if    $a > 1.724h$ and Euler's constant,    $\gamma=0.577216$.