Modules / Lectures
NameDownloadDownload Size
Lecture NoteDownload as zip file3.3M
Module NameDownloadDescriptionDownload Size
Advanced Numerical AnalysisMidTerm-ExamMidTerm-Exam71
Advanced Numerical AnalysisProgramming-Quiz-AProgramming-Quiz-A59
Advanced Numerical AnalysisProgramming-Quiz-BProgramming-Quiz-B51
Advanced Numerical AnalysisProgramming-Quiz-CProgramming-Quiz-C53
Advanced Numerical AnalysisFinal-Exam-1Final-Exam-164
Advanced Numerical AnalysisFinal-Exam-2Final-Exam-257
Advanced Numerical AnalysisMidTerm-Exam-1MidTerm-Exam-145
Advanced Numerical AnalysisMidTerm-Exam-2MidTerm-Exam-271
Advanced Numerical AnalysisQuiz-IQuiz-I61
Advanced Numerical AnalysisQuiz-IIQuiz-II61

Sl.No Chapter Name English
1Lecture 1: Introduction and OverviewPDF unavailable
2Lecture -2 Fundamentals of Vector Spaces PDF unavailable
3Lecture 3 : Basic Dimension and Sub-space of a Vector SpacePDF unavailable
4Lecture 4 : Introduction to Normed Vector SpacesPDF unavailable
5Lecture 5 : Examples of Norms,Cauchy Sequence and Convergence, Introduction to Banach SpacesPDF unavailable
6Lecture 6 : Introduction to Inner Product Spaces PDF unavailable
7Lecture 7 : Cauchy Schwaz Inequality and Orthogonal SetsPDF unavailable
8Lecture 8 : Gram-Schmidt Process and Generation of Orthogonal Sets PDF unavailable
9Lecture 9 : Problem Discretization Using Appropriation Theory PDF unavailable
10Lecture 10 : Weierstrass Theorem and Polynomial Approximation PDF unavailable
11Lecture 11 : Taylor Series Approximation and Newton's Method PDF unavailable
12Lecture 12 : Solving ODE - BVPs Using Firute Difference Method PDF unavailable
13Lecture 13 :Solving ODE - BVPs and PDEs Using Finite Difference Method PDF unavailable
14Lecture 14 : Finite Difference Method (contd.) and Polynomial InterpolationsPDF unavailable
15Lecture 15 : Polynomial and Function Interpolations,Orthogonal Collocations Method for Solving ODE -BVPsPDF unavailable
16Lecture 16 : Orthogonal Collocations Method for Solving ODE - BVPs and PDEsPDF unavailable
17Lecture 17 :Least Square Approximations, Necessary and Sufficient Conditions for Unconstrained OptimizationPDF unavailable
18Lecture 18 : Least Square Approximations :Necessary and Sufficient Conditions for Unconstrained Optimization Least Square Approximations ( contd..)PDF unavailable
19Lecture 19 :Linear Least Square Estimation and Geometric Interpretation of the Least Square SolutionPDF unavailable
20Lecture 20 : Geometric Interpretation of the Least Square Solution (Contd.) and Projection Theorem in a Hilbert SpacesPDF unavailable
21Lecture 21 : Projection Theorem in a Hilbert Spaces (Contd.) and Approximation Using Orthogonal BasisPDF unavailable
22Lecture 22 :Discretization of ODE-BVP using Least Square ApproximationPDF unavailable
23Lecture 23 : Discretization of ODE-BVP using Least Square Approximation and Gelarkin MethodPDF unavailable
24Lecture 24 : Model Parameter Estimation using Gauss-Newton MethodPDF unavailable
25Lecture 25 : Solving Linear Algebraic Equations and Methods of Sparse Linear SystemsPDF unavailable
26Lecture 26 : Methods of Sparse Linear Systems (Contd.) and Iterative Methods for Solving Linear Algebraic EquationsPDF unavailable
27Lecture 27 : Iterative Methods for Solving Linear Algebraic EquationsPDF unavailable
28Lecture 28 : Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis using EigenvaluesPDF unavailable
29Lecture 29 :Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis using Matrix NormsPDF unavailable
30Lecture 30 : Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis using Matrix Norms (Contd.)PDF unavailable
31Lecture 31 : Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis (Contd.)PDF unavailable
32Lecture 32 :Optimization Based Methods for Solving Linear Algebraic Equations: Gradient MethodPDF unavailable
33Lecture 33 : Conjugate Gradient Method, Matrix Conditioning and Solutions of Linear Algebraic EquationsPDF unavailable
34Lecture 34 : Matrix Conditioning and Solutions and Linear Algebraic Equations (Contd.)PDF unavailable
35Lecture 35 : Matrix Conditioning (Contd.) and Solving Nonlinear Algebraic EquationsPDF unavailable
36Lecture 36 : Solving Nonlinear Algebraic Equations: Wegstein Method and Variants of Newton's MethodPDF unavailable
37Lecture 37 : Solving Nonlinear Algebraic Equations: Optimization Based MethodsPDF unavailable
38Lecture 38 : Solving Nonlinear Algebraic Equations: Introduction to Convergence analysis of Iterative Solution TechniquesPDF unavailable
39Lecture 39 : Solving Nonlinear Algebraic Equations: Introduction to Convergence analysis (Contd.) and Solving ODE-IVPsPDF unavailable
40Lecture 40 :Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) : Basic ConceptsPDF unavailable
41Lecture 41 :Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) : Runge Kutta MethodsPDF unavailable
42Lecture 42 :Solving ODE-IVPs : Runge Kutta Methods (contd.) and Multi-step MethodsPDF unavailable
43Lecture 43 :Solving ODE-IVPs : Generalized Formulation of Multi-step MethodsPDF unavailable
44Lecture 44 : Solving ODE-IVPs : Multi-step Methods (contd.) and Orthogonal Collocations MethodPDF unavailable
45Lecture 45 : Solving ODE-IVPs: Selection of Integration Interval and Convergence Analysis of Solution SchemesPDF unavailable
46Lecture 46 : Solving ODE-IVPs: Convergence Analysis of Solution Schemes (contd.)PDF unavailable
47Lecture 47 :Solving ODE-IVPs: Convergence Analysis of Solution Schemes (contd.) and Solving ODE-BVP using Single Shooting MethodPDF unavailable
48Lecture 48 : Methods for Solving System of Differential Algebraic EquationsPDF unavailable
49Lecture 49 : Methods for Solving System of Differential Algebraic Equations (contd.) and Concluding RemarksPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available