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1 Introduction

The central problem of linear algebra is solution of linear equations of type

a11x1 + a12x2 + ...........+ a1nxn = b1 (1)

a21x1 + a22x2 + ...........+ a2nxn = b2 (2)

.................................. = .... (3)

am1x1 + am2x2 + ..........+ amnxn = bm (4)

which can be expressed in vector notation as follows

Ax = b (5)

A =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

am1 ... ... amn

 (6)

where x ∈ Rn,b ∈ Rm and A∈ Rm × Rn i.e. A is a m × n matrix. Here, m represents

number of equations while n represents number of unknowns. Three possible situations arise

while developing mathematical models

• Case (m > n) : system may have a unique solution / no solution / multiple solutions

depending on rank of matrix A and vector b.

• Case (m < n) : system either has no solution or has infinite solutions.

Note that when there is no solution, it is possible to find projection of b in the column

space of A. This case was dealt with in the Lecture Notes on Problem Discretization by

Approximation Theory. In these lecture notes, we are interested in the case when m = n,

particularly when the number of equations are large. A took-kit to solve equations of this type

is at the heart of the numerical analysis. Before we present the numerical methods to solve

equation (5), we discuss the conditions under which the solutions exist. We then proceed

to develop direct and iterative methods for solving large scale problems. We later discuss

numerical conditioning of a matrix and its relation to errors that can arise in computing

numerical solutions.

2 Existence of Solutions

Consider the following system of equations[
1

2

2

−2

][
x

y

]
=

[
2

1

]
(7)
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Figure 1: Linear algebraic equations: (a) Row viewpoint and (b) Column viewpoint

There are two ways of interpreting the above matrix vector equation geometrically.

• Row viewpoint [3]: If we consider two equations separately as

x+ 2y =
[

1 2
] [ x

y

]
= 1 (8)

2x− 2y =
[

2 −2
] [ x

y

]
= 1 (9)

then, each one is a line in x-y plane and solving this set of equations simultaneously

can be interpreted as finding the point of their intersection (see Figure 1 (a)).

• Column viewpoint [3]: We can interpret the equation as linear combination of col-
umn vectors, i.e. as vector addition[

1

2

]
x +

[
2

−2

]
y =

[
2

1

]
(10)

Thus, the system of simultaneous equations can be looked upon as one vector equation

i.e. addition or linear combination of two vectors (see Figure 1 (b)).
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Now consider the following two linear equations

x+ y = 2 (11)

3x+ 3y = 4 (12)

This is clearly an inconsistent case and has no solution as the row vectors are linearly

dependent. In column picture, no scalar multiple of

v = [1 3]T

can found such that αv = [2 4]T . Thus, in a singular case

Row viewpoint fails ⇐⇒ Column viewpoint fails

i.e. if two lines fail to meet in the row viewpoint then vector b cannot be expressed as linear

combination of column vectors in the column viewpoint [3].

Now, consider a general system of linear equations Ax = b where A is an n×n matrix.
Row viewpoint : Let A be represented as

A =


(
r(1)
)T(

r(2)
)T

....(
r(n)
)T

 (13)

where
(
r(i)
)T
represents i’th row of matrix A. Then Ax = b can be written as n equations

(
r(1)
)T

x(
r(2)
)T

x

....(
r(n)
)T

x

 =


b1

b2

....

bn

 (14)

Each of these equations
(
r(i)
)T

x = bi represents a hyperplane in Rn (i.e. line in R2 ,plane

in R3 and so on). Solution of Ax = b is the point x at which all these hyperplanes

intersect (if at all they intersect in one point).

Column viewpoint : Let matrix A be represented as

A = [ c(1) c(2).........c(n) ]

where c(i) represents ithcolumn of A. Then we can look at Ax = b as one vector equation

x1c
(1) + x2c

(2) + ..............+ xnc
(n) = b (15)
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Components of solution vector x tells us how to combine column vectors to obtain vector

b.In singular case, the n hyperplanes have no point in common or equivalently the n col-

umn vectors are not linearly independent. Thus, both these geometric interpretations are

consistent with each other.

Matrix A operates on vector x ∈ R(AT ) (i.e. a vector belonging to row space of A) it

produces a vector Ax ∈ R(A) (i.e. a vector in column space of A). Thus, given a vector b, a

solution x exists Ax = b if only if b ∈ R(A). The solution is unique if the columns of A are

linearly independent and the null space of A contains only the origin, i.e. N (A) ≡ {0}.A
non-zero null space is obtained only when columns ofA are linearly dependent and the matrix

A is not invertible. In such as case, we end up either with infinite number of solutions when

b ∈ R(A) or with no solution when b /∈ R(A).

3 Direct Solution Techniques

Methods for solving linear algebraic equations can be categorized as direct and iterative

schemes. There are several methods which directly solve equation (5). Prominent among

these are such as Cramer’s rule, Gaussian elimination and QR factorization. As indicated

later, the Cramer’s rule is unsuitable for computer implementation and is not discussed here.

Among the direct methods, we only present the Gaussian elimination here in detail.

3.1 Gaussian Elimination and LU Decomposition

The Gaussian elimination is arguably the most used method for solving a set of linear

algebraic equations. It makes use of the fact that a solution of a special system of linear

equations, namely the systems involving triangular matrices, can be constructed very easily.

For example, consider a system of linear equation given by the following matrix equation

U =


u11 u12 u13 ... u1n

0 u22 u23 ... u2n

0 0 u33 ... u3n

0 ... .... ... ...

0 ... . 0 u nn

 (16)

Here, U is a upper triangular matrix such that all elements below the main diagonal are

zero and all the diagonal elements are non-zero, i.e. uii 6= 0 for all i. To solve the system

Ux =β, one can start from the last equation

xn =
βn
unn

(17)
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and then proceed as follows

xn−1 =
1

un−1,n−1

[
βn−1 − un−1,nxn

]
xn−2 =

1

un−2,n−2

[
βn−2 − un−2,n−1xn−1 − un−2,nxn

]
In general, for i’th element xi, we can write

xi =
1

uii

[
βi −

n∑
j=i+1

uijxj

]
(18)

where i = n − 1, n − 2, ...1. Since we proceed from i = n to i = 1, these set of calculations

are referred to as back substitution.

Thus, the solution procedure for solving this system of equations involving a special type

of upper triangular matrix is particularly simple. However, the trouble is that most of the

problems encountered in real applications do not have such special form. Now, suppose

we want to solve a system of equations Ax = b where A is a general full rank square

matrix without any special form. Then, by some series of transformations, can we convert

the system from Ax = b form to Ux =β form, i.e. to the desired special form? It is

important to carry out this transformation such that the original system of equations and

the transformed system of equations have identical solutions, x.

To begin with, let us note one important property of the system of linear algebraic

equations under consideration. Let T represent an arbitrary square matrix with full rank,

i.e. T is invertible. Then, the system of equations Ax = b and (TA)x = Tb have identical

solutions. This follows from invertibility of matrix T. Thus, if we can find a matrix T such

that TA = U, where U is of the form (16) and uii 6= 0 for all i, then recovering the solution

x from the transformed system of equations is quite straight forward. Let us see how to

construct such a transformation matrix systematically.

Thus, the task at hand is to convert a general matrix A to the upper triangular form

U.To understand the process of conversion, let is consider a specific example where (A,b)

are chosen as follows

A =

 2 1 −1

4 1 2

−2 2 1

 and b =

 2

7

1

 (19)

To begin with, we would like to transform A to matrix

A(1) =

 2 1 −1

0 ∗ ∗
−2 2 1
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such that element (2,1) of A(1) is zero. This can be achieved by constructing an elementary

matrix, E21, as follows

E21 =

 1 0 0

−e21 1 0

0 0 1

 =

 1 0 0

−2 1 0

0 0 1


where

e21 =
a21
a11

= 2

Here, the element a11 is called as pivot, or, to be precise, the first pivot. Note that E21 is an

invertible matrix and its inverse can be constructed as follows

(E21)
−1 =

 1 0 0

e21 1 0

0 0 1


Multiplying matrix A and vector b with E21 yields

A(1) = E21A =

 2 1 −1

0 −1 4

−2 2 1

 and b(1)= E21b =

 2

3

1


and since the transformation matrix T = E21 is invertible, the transformed system of equa-

tions (E21A)x = (E21b) and the original system Ax = b will have identical solutions.

While the above transformation was achieved by multiplying both the sides of Ax = b by

T = E21, identical result can be achieved in practice if we multiply the first row of the matrix

augmented matrix
[

A | b
]
by −e21 add it to its second row, i.e.

a
(1)
2j = a2j − e21a1j

for j = 1, 2, ...n and b(1)2 = b2−e21b1. This turns out to be much more effi cient way of carrying
out the transformation than doing the matrix multiplications.

Next step is to transform A(1) to

A(2) =

 2 1 −1

0 −1 4

0 ∗ ∗


and this can be achieved by constructing

E31 =

 1 0 0

0 1 0

−e31 0 1

 =


1 0 0

0 1 0

−a31
a11

0 1

 =

 1 0 0

0 1 0

1 0 1


8



and multiplying matrix A(1) and vector b(1) with E31 i.e.

A(2) = E31A
(1) = (E31E21) A =

 2 1 −1

0 −1 4

0 3 0


b(2) = E31b

(1) = (E31E21) b =

 2

3

3


Note again that E31 is invertible and

(E31)
−1 =

 1 0 0

0 1 0

e31 0 1

 =

 1 0 0

0 1 0

−1 0 1


Thus, to begin with, we make all the elements in the first column zero, except the first one.

To get an upper triangular form, we now have to eliminate element (3,2) of A(2) and this

can be achieved by constructing another elementary matrix

E32 =

 1 0 0

0 1 0

0 −e32 1

 =


1 0 0

0 1 0

0 −a
(2)
32

a
(2)
22

1

 =

 1 0 0

0 1 0

0 3 1


Transforming A(2) we obtain

U = A(3) = E32A
(2) = (E32E31E21) A =

 2 1 −1

0 −1 4

0 0 12


β = b(3)=E31b

(1) = (E32E31E21) b =

 2

3

12


Note that matrix A(3) is exactly the upper triangular form U that we have been looking for.
The invertible transformation matrix T that achieves this is given by

T = E32E31E21 =

 1 0 0

−2 1 0

−5 3 1


which is a lower triangular matrix. Once we have transformed Ax = b to Ux =β form, it

is straight forward to compute the solution

x3 = 1, x2 = 1 and x1 = 1
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using the back substitution method.

It is interesting to note that

T−1 = E−121 E−131 E−132 =

 1 0 0

2 1 0

−1 −3 1

 =

 1 0 0

2 1 0

−1 −3 1

 =

 1 0 0

e21 1 0

e31 e32 1


i.e. the inverse of matrix T can be constructed simply by inserting eij at (i,j)’th position in

an identity matrix. Since we have U = TA, matrix A can be recovered from U by inverting

the transformation process as A = T−1 U. Here, T−1 is a lower triangular matrix and it is

customary to denote it using symbol L i.e. L ≡ T−1 and A = L U. This is nothing but the

LU decomposition of matrix A.

Before we proceed with generalization of the above example, it is necessary to examine a

degenerate situation that can arise in the process of Gaussian elimination. In the course of

transformation, we may end up with a scenario where the a zero appears in one of the pivot

locations. For example, consider the system of equations with slightly modified A matrix

and b vector i.e.

A =

 2 1 −1

4 2 2

−2 2 1

 and b =

 2

8

1

 (20)

Multiplying with

E21 =

 1 0 0

−2 1 0

0 0 1

 and E31 =

 1 0 0

0 1 0

1 0 1


yields

A(2) = E31E21A =

 2 1 −1

0 0 4

0 3 0

 and b(2)= E31E21b =

 2

4

3


Note that zero appears in the pivot element, i.e. a(2)22 = 0, and consequently the construction

of E32 is in trouble. This diffi culty can be alleviated if we exchange the last two rows of

matrix A(2) and last two elements of b(2), i.e.

A(3) =

 2 1 −1

0 3 0

0 0 4

 and b(3)=

 2

3

4


This rearrangement renders the pivot element a(3)22 6= 0 and the solution becomes tractable.

The transformation leading to exchange of rows can be achieved by constructing a permuta-
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tion matrix P32

P32 =

 1 0 0

0 0 1

0 1 0


such that P32A

(2) = A(3). The permutation matrix P32 is obtained just by exchanging rows 2

and 3 of the identity matrix. Note that the permutation matrices have strange characteristics.

Not only these matrices are invertible, but these matrices are inverses of themselves! Thus,

we have

(P32)
2 =

 1 0 0

0 0 1

0 1 0


 1 0 0

0 0 1

0 1 0

 =

 1 0 0

0 1 0

0 0 1


which implies (P32)

−1 = P32 and, if you consider the fact that exchanging two rows of a

matrix in succession will bring back the original matrix, then this result is obvious. Coming

back to the construction of the transformation matrix for the linear system of equations

under consideration, matrix T is now constructed as follows T = P32E31E21.

This approach of constructing the transformation matrix T, demonstrated using a 3× 3

matrix A, can be easily generalized for a system of equations involving an n× n matrix A.

For example, elementary matrix Ei1, which reduces element (i, 1) in matrix A to zero, can

be constructed by simply inserting −ei1 = −(ai1/a11) at (i, 1)′th location in an n×n identity
matrix, i.e.

Ej1 =


1 0 0 ... 0

... ... ... ... ...

−ei1 ... 1 ... 0

0 ... .... ... ...

0 ... .... 0 1

 (21)

while the permutation matrix Pij, which interchanges i’th and j’th rows, can be created by

interchanging i’th and j’th rows of the n × n identity matrix. The transformation matrix

T for a general n × n matrix A can then be constructed by multiplying the elementary

matrices, Eij, and the permutation matrices, Pij, in appropriate order such that TA = U.

It is important to note that the explanation presented in this subsection provides insights

into the internal working of the Gaussian elimination process. While performing the Gaussian

elimination on a particular matrix through a computer program, neither matrices (Eij,Pij)

nor matrix T is constructed explicitly. For example, reducing elements (i, 1) in the first

column of matrix A to zero is achieved by performing the following set of computations

a
(i)
ij = aij − ei1a1j for j = 1, 2, ...n

11



where i = 1, 2, ...n. Performing these elimination calculations, which are carried out row

wise and may require row exchanges, is equivalent to constructing matrices (Eij,Pij) and

effectively matrix T, which is an invertible matrix. Once we have reduced Ax = b to

Ux =β form, such that uii 6= 0 for all i, then it is easy to recover the solution x using

the back substitution method. Invertibility of matrix T guarantees that the solution of the

transformed problem is identical to that of the original problem.

3.2 Number Computations in Direct Methods

Let ϕ denote the number of divisions and multiplications required for generating solution

by a particular method. Various direct methods can be compared on the basis of ϕ.

• Cramers Rule:

ϕ(estimated) = (n− 1)(n+ 1)(n!) + n ∼= n2 ∗ n! (22)

For a problem of size n = 100 we have ϕ ∼= 10162 and the time estimate for solving

this problem on DEC1090 is approximately 10149years [1].

• Gaussian Elimination and Backward Sweep: By maximal pivoting and row

operations, we first reduce the system (5) to

Ux = b̂ (23)

where U is a upper triangular matrix and then use backward sweep to solve (23) for

x.For this scheme, we have

ϕ =
n3 + 3n2 − n

3
∼=
n3

3
(24)

For n = 100we have ϕ ∼= 3.3 ∗ 105 [1].

• LU-Decomposition: LU decomposition is used when equation (5) is to be solved for
several different values of vector b, i.e.,

Ax(k) = b(k) ; k = 1, 2, ......N (25)

The sequence of computations is as follows

A = LU (Solved only once) (26)

Ly(k) = b(k) ; k = 1, 2, ......N (27)

Ux(k) = y(k) ; k = 1, 2, ......N (28)
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For N different b vectors,

ϕ =
n3 − n

3
+Nn2 (29)

• Gauss_Jordon Elimination: In this case, we start with [A : I : b] and by sequence

row operations we reduce it to [I : A−1 : x] i.e.

[
A : I : b(k)

] Sequence of

→
RowOperations

[
I : A−1 : x(k)

]
(30)

For this scheme, we have

ϕ =
n3 + (N − 1)n2

2
(31)

Thus, Cramer’s rule is certainly not suitable for numerical computations. The later three

methods require significantly smaller number of multiplication and division operations when

compared to Cramer’s rule and are best suited for computing numerical solutions moderately

large (n ≈ 1000) systems. When number of equations is significantly large (n ≈ 10000), even

the Gaussian elimination and related methods can turn out to be computationally expensive

and we have to look for alternative schemes that can solve (5) in smaller number of steps.

When matrices have some simple structure (few non-zero elements and large number of
zero elements), direct methods tailored to exploit sparsity and perform effi cient numerical

computations. Also, iterative methods give some hope as an approximate solution x can be

calculated quickly using these techniques.

4 Direct Methods for Solving Sparse Linear Systems

A system of Linear equations

Ax = b (32)

is called sparse if only a relatively small number of its matrix elements (aij) are nonzero.

The sparse patterns that frequently occur are

• Tridiagonal

• Band diagonal with band width M

• Block diagonal matrices

• Lower / upper triangular and block lower / upper triangular matrices
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We have encountered numerous situations in the module on Problem Discretization using

Approximation Theory where such matrices arise. It is wasteful to apply general direct meth-

ods on these problems. Special methods are evolved for solving such sparse systems, which

can achieve considerable reduction in the computation time and memory space requirements.

In this section, some of the sparse matrix algorithms are discussed in detail. This is meant

to be only a brief introduction to sparse matrix computations and the treatment of the topic

is, by no means, exhaustive.

4.1 Block Diagonal Matrices

In some applications, such as solving ODE-BVP / PDE using orthogonal collocations on

finite elements, we encounter equations with a block diagonal matrices, i.e.
A1 [0] .... [0]

[0] A2 .... [0]

..... . .... .....

[0] [0] .... Am




x(1)

x(2)

....

x(m)

 =


b(1)

b(2)

....

b(m)


where Ai for i = 1, 2, ..m are ni × ni sub-matrices and x(i) ∈ Rni , b(i) ∈ Rni for i = 1, 2, ..m

are sub-vectors. Such a system of equations can be solved by solving the following sub-

problems

Aix
(i) = b(i) for i = 1, 2, ...m (33)

where each equation is solved using, say, Gaussian elimination. Each Gaussian elimination

sub-problem would require

ϕi =
n3i + 3n2i − ni

3
and

ϕ(Block Diagonal) =
m∑
i=1

ϕi

Defining dimension of vector x as n =
∑m

i=1 ni, the number of multiplications and divisions

in the conventional Gaussian elimination equals

ϕ(Conventional) =
n3 + 3n2 − n

3

It can be easily shown that
m∑
i=1

n3i + 3n2i − ni
3

<<
(
∑m

i=1 ni)
3

+ 3 (
∑m

i=1 ni)
2 −

∑m
i=1 ni

3

i.e.

ϕ(Block Diagonal) << ϕ(Conventional)
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4.2 Thomas Algorithm for Tridiagonal and Block Tridiagonal Ma-
trices [2]

Consider system of equation given by following equation

b1 c1 0 ... ... ... ... 0

a2 b2 c2 0 ... ... ... 0

0 a3 b3 c3 ... ... ... 0

0 0 a4 b4 c4. ... ... ...

... ... .. ... ... ... ... ...

... ... ... ... ... ... cn−2 0

... ... ... ... ... an−1 bn−1 cn−1

0 0 0 0 ... .0 an bn





x1

x2

x3

....

....

....

....

xn


=



d1

d2

....

....

....

....

....

dn


(34)

where matrix A is a tridiagonal matrix. Thomas algorithm is the Gaussian elimination

algorithm tailored to solve this type of sparse system.

• Step 1:Triangularization: Forward sweep with normalization

γ1 =
c1
b1

(35)

γk =
ck

bk − akγk−1
for k = 2, 3, ....(n− 1) (36)

β1 = d1/b1 (37)

βk =
(dk − akβk−1)
(bk − akγk−1)

for k = 2, 3, ....n (38)

This sequence of operations finally results in the following system of equations
1 γ1 0 .... 0

0 1 γ2 .... 0

... 0 1 .... .

.... .... .... .... γn−1
0 0 ... .... 1




x1

x2

....

....

xn

 =


β1
β2
.

.

βn


• Step 2: Backward sweep leads to solution vector

xn = βn

xk = βk − γkxk+1 (39)

k = (n− 1), (n− 2), ......, 1 (40)
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Total no of multiplications and divisions in Thomas algorithm is

ϕ = 5n− 8

which is significantly smaller than the n3/3 operations (approximately) necessary for

carrying out the Gaussian elimination and backward sweep for a dense matrix.

The Thomas algorithm can be easily extended to solve a system of equations that involves

a block tridiagonal matrix. Consider block tridiagonal system of the form
B1 C1 [0]. ..... .... [0].

A2 B2 C2 .... ..... .....

.... ..... ..... ..... ..... [0].

..... ..... ..... ..... .Bn−1 Cn−1

[0] ..... ..... [0] An Bn




x(1)

x(2)

.

.

x(n)

 =


d(1)

d(2)

.

.

d(n)

 (41)

where Ai, Bi and Ci are matrices and (x(i), d(i)) represent vectors of appropriate dimen-

sions.

• Step 1:Block Triangularization

Γ1 = [B1]
−1 C1

Γk = [Bk −AkΓk−1]
−1 Ck for k = 2, 3, ....(n− 1) (42)

β(1) = [B1]
−1 d(1) (43)

β(k) = [Bk −AkΓk−1]
−1 (d(k) −Akβ

(k−1)) for k = 2, 3, ....n

• Step 2: Backward sweep

x(n) = β(n) (44)

x(k) = β(k) − Γkx
(k+1) (45)

for k = (n− 1), (n− 2), ......, 1 (46)
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4.3 Triangular and Block Triangular Matrices

A triangular matrix is a sparse matrix with zero-valued elements above or below the diagonal.

For example, a lower triangular matrix can be represented as follows

L =


l11 0 . . 0

l12 l22 . . 0

. . . . .

. . . . .

l n1 . . . l nn


To solve a system Lx = b, the following algorithm is used

x1 =
b1
l11

(47)

xi =
1

lii

[
bi −

i−1∑
j=1

lijxj

]
for i = 2, 3, .....n (48)

The operational count ϕ i.e., the number of multiplications and divisions, for this elimination

process is

ϕ =
n(n+ 1)

2
(49)

which is considerably smaller than the Gaussian elimination for a dense matrix.

In some applications we encounter equations with a block triangular matrices. For ex-

ample, 
A1,1 [0] .... [0]

A1,2 A2,2 .... [0]

..... . .... .....

Am,1 Am,2 .... Am,m




x(1)

x(2)

....

x(m)

 =


b(1)

b(2)

....

b(m)


where Ai,j are ni × ni sub-matrices while x(i) ∈ Rni and b(i) ∈ Rni are sub-vectors for

i = 1, 2, ..m. The solution of this type of systems is completely analogous to that of lower

triangular systems,except that sub-matrices and sub-vectors are used in place of scalars.

Thus, the equivalent algorithm for block-triangular matrix can be stated as follows

η(1) = (A11)
−1b(1) (50)

x(i) = (Aii)
−1[b(i) −

i−1∑
j=1

(Aijx
(i))] for i = 2, 3, .....m (51)

The above form does not imply that the inverse (Aii)
−1should be computed explicitly. For

example, we can find each x(i) by Gaussian elimination.
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4.4 Solution of a Large System By Partitioning

If matrix A is equation (5) is very large, then we can partition matrix A and vector b as

Ax =

[
A11 A12

A21 A22

][
x(1)

x(2)

]
=

[
b(1)

b(2)

]
where A11 is a (m×m) square matrix. this results in two equations

A11x
(1) + A12x

(2) = b(1) (52)

A21x
(1) + A22 x(2) = b(2) (53)

which can be solved sequentially as follows

x(1) = [A11]
−1 [b(1) −A12x

(2)] (54)

A21 [A11]
−1 [b(1) −A12x

(2)] + A22x
(2) = b(2) (55)[

A22 −A21 [A11]
−1 A12

]
x(2) = b(2) − (A21A

−1
11 )b(1) (56)

x(2) =
[
A22 −A21 [A11]

−1 A12

]−1 [
b(2) − (A21A

−1
11 )b(1)

]
It is also possible to work with higher number of partitions equal to say 9, 16 .... and solve

a given large dimensional problem.

5 Iterative Solution Techniques

By this approach, we start with some initial guess solution, say x(0), for solution x and

generate an improved solution estimate x(k+1) from the previous approximation x(k). This

method is a very effective for solving differential equations, integral equations and related

problems [4]. Let the residue vector r be defined as

r
(k)
i = bi −

n∑
j=1

aijx
(k)
j for i = 1, 2, ...n (57)

i.e. r(k) = b − Ax(k). The iteration sequence
{
x(k) : k = 0, 1, ...

}
is terminated when some

norm of the residue
∥∥r(k)∥∥ =

∥∥∥Ax(k) − b
∥∥∥ becomes suffi ciently small, i.e.∥∥r(k)∥∥
‖b‖ < ε (58)
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where ε is an arbitrarily small number (such as 10−8 or 10−10). Another possible termination

criterion can be ∥∥x(k) − x(k+1)
∥∥

‖x(k+1)‖ < ε (59)

It may be noted that the later condition is practically equivalent to the previous termination

condition.

A simple way to form an iterative scheme is Richardson iterations [4]

x(k+1) = (I−A)x(k) + b (60)

or Richardson iterations preconditioned with approximate inversion

x(k+1) = (I−MA)x(k) + Mb (61)

where matrix M is called approximate inverse of A if ‖I−MA‖ < 1. A question that

naturally arises is ’will the iterations converge to the solution of Ax = b?’. In this section,

to begin with, some well known iterative schemes are presented. Their convergence analysis

is presented next. In the derivations that follow, it is implicitly assumed that the diagonal

elements of matrix A are non-zero, i.e. aii 6= 0. If this is not the case, simple row exchange

is often suffi cient to satisfy this condition.

5.1 Iterative Algorithms

5.1.1 Jacobi-Method

Suppose we have a guess solution, say x(k),

x(k) =
[
x
(k)
1 x

(k)
2 .... x

(k)
n

]T
for Ax = b. To generate an improved estimate starting from x(k),consider the first equation

in the set of equations Ax = b, i.e.,

a11x1 + a12x2 + .........+ a1nxn = b1 (62)

Rearranging this equation, we can arrive at a iterative formula for computing x(k+1)1 , as

x
(k+1)
1 =

1

a11

[
b1 − a12x(k)2 .......− a1nx(k)n

]
(63)

Similarly, using second equation from Ax = b, we can derive

x
(k+1)
2 =

1

a22

[
b2 − a21x(k)1 − a23x

(k)
3 ........− a2nx(k)n

]
(64)
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Table 1: Algorithm for Jacobi Iterations
INITIALIZE :b,A,x(0), kmax, ε

k = 0

δ = 100 ∗ ε
WHILE [(δ > ε) AND (k < kmax)]

FOR i = 1 : n

ri = bi −
n∑
j=1

aijxj

xNi = xi +

(
ri
aii

)
END FOR

δ =
‖r‖
‖b‖

× = xN

k = k + 1

END WHILE

In general, using ithrow of Ax = b, we can generate improved guess for the i’th element x

of as follows

x
(k+1)
i =

1

aii

[
b2 − ai1x(k)1 ......− ai,i−1x(k)i−1 − ai,i+1x

(k)
i+1.....− ai,nx(k)n

]
(65)

The above equation can also be rearranged as follows

x
(k+1)
i = x

(k)
i +

(
r
(k)
i

aii

)

where r(k)i is defined by equation (57). The algorithm for implementing the Jacobi iteration

scheme is summarized in Table 1.

5.1.2 Gauss-Seidel Method

When matrix A is large, there is a practical diffi culty with the Jacobi method. It is re-

quired to store all components of x(k) in the computer memory (as a separate variables) until

calculations of x(k+1) is over. The Gauss-Seidel method overcomes this diffi culty by using

x
(k+1)
i immediately in the next equation while computing x(k+1)i+1 .This modification leads to

the following set of equations

x
(k+1)
1 =

1

a11

[
b1 − a12x(k)2 − a13x

(k)
3 ......a1nx

(k)
n

]
(66)
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Table 2: Algorithm for Gauss-Seidel Iterations
INITIALIZE :b,A,x, kmax, ε

k = 0

δ = 100 ∗ ε
WHILE [(δ > ε) AND (k < kmax)]

FOR i = 1 : n

ri = bi −
n∑
j=1

aijxj

xi = xi + (ri/aii)

END FOR

δ = ‖r‖ / ‖b‖
k = k + 1

END WHILE

x
(k+1)
2 =

1

a22

[
b2 −

{
a21x

(k+1)
1

}
−
{
a23x

(k)
3 + .....+ a2nx

(k)
n

}]
(67)

x
(k+1)
3 =

1

a33

[
b3 −

{
a31x

(k+1)
1 + a32x

(k+1)
2

}
−
{
a34x

(k)
4 + .....+ a3nx

(k)
n

}]
(68)

In general, for i’th element of x, we have

x
(k+1)
i =

(
1

aii

)[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]

To simplify programming, the above equation can be rearranged as follows

x
(k+1)
i = x

(k)
i +

(
r
(k)
i /aii

)
(69)

where

r
(k)
i =

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j

]
The algorithm for implementing Gauss-Siedel iteration scheme is summarized in Table 2.

5.1.3 Relaxation Method

Suppose we have a starting value say y, of a quantity and we wish to approach a target

value, say y∗, by some method. Let application of the method change the value from y to ŷ.

If ŷ is between y and ỹ, which is even closer to y∗ than ŷ, then we can approach y∗ faster by
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Table 3: Algorithms for Over-Relaxation Iterations
INITIALIZE :b,A,x, kmax, ε, ω

k = 0

δ = 100 ∗ ε
WHILE [(δ > ε) AND (k < kmax)]

FOR i = 1 : n

ri = bi −
n∑
j=1

aijxj

zi = xi + (ri/aii)

xi = xi + ω(zi − xi)
END FOR

r = b−Ax

δ = ‖r‖ / ‖b‖
k = k + 1

END WHILE

magnifying the change (ŷ − y) [3]. In order to achieve this, we need to apply a magnifying
factor ω > 1 and get

ỹ = y + ω (ŷ − y) (70)

This amplification process is an extrapolation and is an example of over-relaxation. If the
intermediate value ŷ tends to overshoot target y∗, then we may have to use ω < 1 ; this is

called under-relaxation.
Application of over-relaxation to Gauss-Seidel method leads to the following set of

equations

x
(k+1)
i = x

(k)
i + ω[z

(k+1)
i − x(k)i ] (71)

i = 1, 2, .....n

where z(k+1)i are generated using the Gauss-Seidel method, i.e.,

z
(k+1)
i =

(
1

aii

)[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
(72)

i = 1, 2, .....n

The steps in the implementation of the over-relaxation iteration scheme are summarized in

Table 3. It may be noted that ω is a tuning parameter, which is chosen such that 1 < ω < 2.
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5.2 Convergence Analysis of Iterative Methods [3, 2]

5.2.1 Vector-Matrix Representation

When Ax = b is to be solved iteratively, a question that naturally arises is ’under what

conditions the iterations converge?’. The convergence analysis can be carried out if the

above set of iterative equations are expressed in the vector-matrix notation. For example,

the iterative equations in the Gauss-Siedel method can be arranged as follows
a11 0 .. 0

a21 a22 0 .

... ... ... 0

an1 an2 ... ann



x
(k+1)
1

...

...

x
(k+1)
n

 =


0 −a12 −a13 ... −a1,n
0 0 −a23 ... −a2,n
. . . .. −an−1,n
0 . . . 0



x
(k)
1

.

.

x
(k)
n

+


b1

.

.

bn


(73)

Let D,L and U be diagonal, strictly lower triangular and strictly upper triangular parts of

A, i.e.,

A = L + D + U (74)

(The representation given by equation 74 should NOT be confused with matrix factorization

A = LDU). Using these matrices, the Gauss-Siedel iteration can be expressed as follows

(L + D)x(k+1) = −Ux(k) + b (75)

or

x(k+1) = − (L + D)−1Ux(k) + (L + D)−1b (76)

Similarly, rearranging the iterative equations for Jacobi method, we arrive at

x(k+1) = −D−1(L + U)x(k) + D−1b (77)

and for the relaxation method we get

x(k+1) = (D + ωL)−1[(1− ω)D− ωU]x(k) + ω b (78)

Thus, in general, an iterative method can be developed by splitting matrix A. If A is

expressed as

A = S−T (79)

then, equation Ax = b can be expressed as

Sx = Tx + b

Starting from a guess solution

x(0) = [x
(0)
1 ........x(0)n ]T (80)
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we generate a sequence of approximate solutions as follows

x(k+1) = S−1[Tx(k) + b] where k = 0, 1, 2, ..... (81)

Requirements on S and T matrices are as follows [3] : matrix A should be decomposed into

A = S−T such that

• Matrix S should be easily invertible

• Sequence
{
x(k) : k = 0, 1, 2, ....

}
should converge to x∗where x∗ is the solution ofAx =

b.

The popular iterative formulations correspond to the following choices of matrices S and

T[3, 4]

• Jacobi Method:
SJAC = D, TJAC = −(L + U) (82)

• Forward Gauss-Seidel Method

SGS = L + D, TGS = −U (83)

• Relaxation Method:

SSOR = ωL + D, TSOR = (1− ω) D− ωU (84)

• Backward Gauss Seidel: In this case, iteration begins the update of x with n’th

coordinate rather than the first. This results in the following splitting of matrix A [4]

SBSG = U + D, TBSG = −L (85)

In Symmetric Gauss Seidel approach, a forward Gauss-Seidel iteration is followed by
a backward Gauss-Seidel iteration.

5.2.2 Iterative Scheme as a Linear Difference Equation

In order to solve equation (5), we have formulated an iterative scheme

x(k+1) =
(
S−1T

)
x(k) + S−1b (86)

Let the true solution equation (5) be

x∗ =
(
S−1T

)
x∗ + S−1b (87)
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Defining error vector

e(k) = x(k) − x∗ (88)

and subtracting equation (87) from equation (86), we get

e(k+1) =
(
S−1T

)
e(k) (89)

Thus, if we start with some e(0), then after k iterations we have

e(1) =
(
S−1T

)
e(0) (90)

e(2) =
(
S−2T2

)
e(1) = [S−1T]2e(0) (91)

.... = .......... (92)

e(k) = [S−1T]ke(0) (93)

The convergence of the iterative scheme is assured if

lim

k →∞
e(k) = 0 (94)

i.e.
lim

k →∞
[S−1T]ke(0) = 0 (95)

for any initial guess vector e(0).

Alternatively, consider application of the general iteration equation (86) k times starting

from initial guess x(0). At the k’th iteration step, we have

x(k) =
(
S−1T

)k
x(0) +

[(
S−1T

)k−1
+
(
S−1T

)k−2
+ ...+ S−1T + I

]
S−1b (96)

If we select (S−1T) such that

lim

k →∞
(
S−1T

)k → [0] (97)

where [0] represents the null matrix, then, using identity[
I−

(
S−1T

)]−1
= I +

(
S−1T

)
+ ....+

(
S−1T

)k−1
+
(
S−1T

)k
+ ...

we can write

x(k) →
[
I−

(
S−1T

)]−1
S−1b = [S−T]−1 b = A−1b

for large k. The above expression clearly explains how the iteration sequence generates a

numerical approximation to A−1b, provided condition (97) is satisfied.
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5.2.3 Convergence Criteria for Iteration Schemes

It may be noted that equation (89) is a linear difference equation of form

z(k+1) = Bz(k) (98)

with a specified initial condition z(0). Here, z ∈ Rn and B is a n × n matrix. In Appendix
A, we analyzed behavior of the solutions of linear difference equations of type (98). The

criterion for convergence of iteration equation (89) can be derived using results derived in

Appendix A. The necessary and suffi cient condition for convergence of (89) can be stated as

ρ(S−1T) < 1

i.e. the spectral radius of matrix S−1T should be less than one.

The necessary and suffi cient condition for convergence stated above requires computation

of eigenvalues of S−1T, which is a computationally demanding task when the matrix dimen-

sion is large. For a large dimensional matrix, if we could check this condition before starting

the iterations, then we might as well solve the problem by a direct method rather than using

iterative approach to save computations. Thus, there is a need to derive some alternate

criteria for convergence, which can be checked easily before starting iterations. Theorem 14

in Appendix A states that spectral radium of a matrix is smaller than any induced norm of

the matrix. Thus, for matrix S−1T, we have

ρ
(
S−1T

)
≤
∥∥S−1T∥∥

‖.‖ is any induced matrix norm. Using this result, we can arrive at the following suffi cient
conditions for the convergence of iterations∥∥S−1T∥∥

1
< 1 or

∥∥S−1T∥∥∞ < 1

Evaluating 1 or∞ norms of S−1T is significantly easier than evaluating the spectral radius

of S−1T. Satisfaction of any of the above conditions implies ρ (S−1T) < 1. However, it may

be noted that these are only suffi cient conditions. Thus, if ‖S−1T‖∞ > 1 or ‖S−1T‖1 > 1,

we cannot conclude anything about the convergence of iterations.

If the matrixA has some special properties, such as diagonal dominance or symmetry and

positive definiteness, then the convergence is ensured for some iterative techniques. Some of

the important convergence results available in the literature are summarized here.

Definition 1 A matrix A is called strictly diagonally dominant if
n∑

j=1(j 6=i)

|aij| < |aii| for i = 1, 2., ...n (99)
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Theorem 2 [2] A suffi cient condition for the convergence of Jacobi and Gauss-Seidel meth-
ods is that the matrix A of linear system Ax = b is strictly diagonally dominant.

Proof: Refer to Appendix B.

Theorem 3 [5] The Gauss-Seidel iterations converge if matrix A is symmetric and positive

definite.

Proof: Refer to Appendix B.

Theorem 4 [3] For an arbitrary matrix A, the necessary condition for the convergence of

relaxation method is 0 < ω < 2.

Proof: Refer to appendix B.

Theorem 5 [2] When matrix A is strictly diagonally dominant, a suffi cient condition for

the convergence of relaxation methods is that 0 < ω ≤ 1.

Proof: Left to reader as an exercise.

Theorem 6 [2]For a symmetric and positive definite matrix A, the relaxation method con-

verges if and only if 0 < ω < 2.

Proof: Left to reader as an exercise.

The Theorems 3 and 6 guarantees convergence of Gauss-Seidel method or relaxation

method when matrix A is symmetric and positive definite. Now, what do we do if matrix

A in Ax = b is not symmetric and positive definite? We can multiply both the sides of the

equation by AT and transform the original problem as follows(
ATA

)
x =

(
ATb

)
(100)

If matrix A is non-singular, then matrix
(
ATA

)
is always symmetric and positive definite

as

xT
(
ATA

)
x = (Ax)T (Ax) > 0 for any x 6= 0 (101)

Now, for the transformed problem, we are guaranteed convergence if we use the Gauss-Seidel

method or relaxation method such that 0 < ω < 2.

Example 7 [3]Consider system Ax = b where

A =

[
2 −1

−1 2

]
(102)
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For Jacobi method

S−1T =

[
0 1/2

1/2 0

]
(103)

ρ(S−1T) = 1/2 (104)

Thus, the error norm at each iteration is reduced by factor of 0.5For Gauss-Seidel method

S−1T =

[
0 1/2

0 1/4

]
(105)

ρ(S−1T) = 1/4 (106)

Thus, the error norm at each iteration is reduced by factor of 1/4. This implies that, for the

example under consideration

1 Gauss Seidel iteration ≡ 2 Jacobi iterations (107)

For relaxation method,

S−1T =

[
2 0

−ω 2

]−1 [
2(1− ω) ω

0 2(1− ω)

]
(108)

=

 (1− ω) (ω/2)

(ω/2)(1− ω) (1− ω +
ω2

4
)

 (109)

λ1λ2 = det(S−1T) = (1− ω)2 (110)

λ1 + λ2 = trace(S−1T) (111)

= 2− 2ω +
ω2

4
(112)

Now, if we plot ρ(S−1T) v/s ω, then it is observed that λ1 = λ2 at ω = ωopt.From equation

(110), it follows that

λ1 = λ2 = ωopt − 1 (113)

at optimum ω.Now,

λ1 + λ2 = 2(ωopt − 1) (114)

= 2− 2ωopt +
ω2opt

4
(115)

⇒ ωopt = 4(2−
√

3) ∼= 1.07 (116)

⇒ ρ(S−1T) = λ1 = λ2 ∼= 0.07 (117)

This is a major reduction in spectral radius when compared to Gauss-Seidel method. Thus,

the error norm at each iteration is reduced by factor of 1/16 (∼= 0.07) if we choose ω = ωopt.
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Example 8 Consider system Ax = b where

A =

 4 5 9

7 1 6

5 2 9

 ; b =

 1

1

1

 (118)

If we use Gauss-Seidel method to solve for x, the iterations do not converge as

S−1T =

 4 0 0

7 1 0

5 2 9


−1  0 −5 −9

0 0 −6

0 0 0

 (119)

ρ(S−1T) = 7.3 > 1 (120)

Now, let us modify the problem by pre-multiplying Ax = b by AT on both the sides, i.e. the

modified problem is
(
ATA

)
x =

(
ATb

)
. The modified problem becomes

ATA =

 90 37 123

37 30 69

123 69 198

 ; ATb =

 16

8

24

 (121)

The matrixATA is symmetric and positive definite and, according to Theorem 3, the it-

erations should converge if Gauss-Seidel method is used. For the transformed problem, we

have

S−1T =

 90 0 0

37 30 0

123 69 198


−1  0 −37 −123

0 0 −69

0 0 0

 (122)

ρ(S−1T) = 0.96 < 1 (123)

and within 220 iterations (termination criterion 1× 10−5), we get following solution

x =

 0.0937

0.0312

0.0521

 (124)

which is close to the solution

x∗=

 0.0937

0.0313

0.0521

 (125)

computed as x∗ = A−1b.

29



Table 4: Rate of Convergence of Iterative Methods
Method Rate of Convergence No. of iterations for ε error

Jacobi O(1/2n2) O(2n2)

Gauss_Seidel O(1/n2) O(n2)

Relaxation with optimal ω O(2/n) O(n/2)

Example 9 Consider system Ax = b where

A =


7 1 −2 1

1 8 1 0

−2 1 5 −1

1 0 −1 3

 ; b =


1

−1

1

−1

 (126)

If it is desired to solve the resulting problem using Jacobi method / Gauss-Seidel method, will

the iterations converge? To establish convergence of Jacobi / Gauss-Seidel method, we can

check whether A is strictly diagonally dominant. Since the following inequalities hold

Row 1 : 1 + |−2|+ 1 < 7

Row 2 : 1 + 0 + 1 < 8

Row 3 : |−2|+ 1 + |−1| < 5

Row 4 : 1 + 0 + |−1| < 3

matrix A is strictly diagonally dominant, which is a suffi cient condition for convergence of

Jacobi / Gauss-Seidel iterations Theorem 2. Thus, Jacobi / Gauss-Seidel iterations will

converge to the solution starting from any initial guess.

From these examples, we can clearly see that the rate of convergence depends on ρ(S−1T).

A comparison of rates of convergence obtained from analysis of some simple problems is

presented in Table 4[2].

6 Optimization Based Methods

Unconstrained optimization is another tool employed to solve large scale linear algebraic

equations. Gradient and conjugate gradient methods for numerically solving unconstrained

optimization problems can be tailored to solve a set of linear algebraic equations. The

development of the gradient search method for unconstrained optimization for any scalar

objective function φ(x) :Rn → R is presented in Appendix C. In this section, we present

how this method can be tailored for solving Ax = b.
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6.1 Gradient Search Method

Consider system of linear algebraic equations of the form

Ax = b ; x,b ∈ Rn (127)

where A is a non-singular matrix. Defining objective function

φ(x) =
1

2
(Ax− b)T (Ax− b) (128)

the necessary condition for optimality requires that

∂φ(x)

∂x
= AT (Ax− b) = 0 (129)

Since A is assumed to be nonsingular, the stationarity condition is satisfied only at the

solution of Ax = b. The stationary point is also a minimum as
[
∂2φ(x)
∂x2

]
= ATA is a positive

definite matrix. Thus, we can compute the solution of Ax = b by minimizing

φ(x) =
1

2
xT
(
ATA

)
x−
(
ATb

)T
x (130)

When A is positive definite, the minimization problem can be formulated as follows

φ(x) =
1

2
xTAx− bTx (131)

as it can be shown that the above function achieves a minimum for x* where Ax*=b. In the

development that follows, for the sake of simplifying the notation, it is assumed that A is

symmetric and positive definite. When the original problem does not involve a symmetric

positive definite matrix, then it can always be transformed by pre-multiplying both sides of

the equation by AT .

To arrive at the gradient search algorithm, given a guess solution x(k), consider the line

search problem (ref. Appendix C for details)

λk =
min

λ
φ
(
x(k) + λg(k)

)
where

g(k) = −(Ax(k)−b) (132)

Solving the one dimensional optimization problem yields

λk =
bTg(k)

(g(k))
T

Ag(k)

Thus, the gradient search method can be summarized in Table (5).
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Table 5: Gradient Search Method for Solving Linear Algebraic Equations
INITIALIZE: x(0), ε, kmax, λ

(0), δ

k = 0

g(0) = b−Ax(0)

WHILE [(δ > ε) AND (k < kmax)]

λk = − bTg(k)

(g(k))
T

Ag(k)

x(k+1) = x(k) + λk g(k)

g(k+1) = b−Ax(k+1)

δ =

∥∥g(k+1) − g(k)
∥∥
2

‖g(k+1)‖2
g(k) = g(k+1)

k = k + 1

END WHILE

6.2 Conjugate Gradient Method

The gradient method makes fast progress initially when the guess is away from the optimum.

However, this method tends to slow down as iterations progress. It can be shown that

directions there exist better descent directions than the negative of the gradient direction.

One such approach is conjugate gradient method. In conjugate directions method, we take

search directions {s(k) : k = 0, 1, 2, ...} such that they are orthogonal with respect to matrix

A, i.e. [
s(k)
]T

As(k−1) = 0 for all k (133)

Such directions are called A-conjugate directions. To see how these directions are con-

structed, consider recursive scheme

s(k) = βks
(k−1) + g(k) (134)

s(k−1) = 0 (135)

Premultiplying
[
s(k)
]T
by As(k−1), we have[

s(k)
]T

As(k−1) = βk
[
s(k−1)

]T
As(k−1) +

[
g(k)
]T

As(k−1) (136)

A-conjugacy of directions {s(k) : k = 0, 1, 2, ...} can be achieved if we choose

βk = −
[
g(k)
]T

As(k−1)

[s(k−1)]
T

As(k−1)
(137)
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Thus, given a search direction s(k−1), new search direction is constructed as follows

s(k) = −
[
g(k)
]T

As(k−1)

[s(k−1)]
T

As(k−1)
s(k−1) + g(k)

= g(k) −
〈
g(k), ŝ(k−1)

〉
A

ŝ(k−1) (138)

where

ŝ(k−1) =
s(k−1)√

[s(k−1)]
T

As(k−1)
=

s(k−1)√
〈s(k−1), s(k−1)〉A

It may be that matrix A is assumed to be symmetric and positive definite. Now, recursive

use of equations (134-135) yields

s(0) = g(0)

s(1) = β1s
(0) + g(1) = β1g

(0) + g(1)

s(2) = β2s
(1) + g(2)

= β2β1g
(0) + β2g

(1) + g(2)

.... = ....

s(n) = (βn...β1)g
(0) + (βn...β2)g

(1) + ...+ g(n)

Thus, this procedure sets up each new search direction as a linear combination of all previous

search directions and newly determined gradient.

Now, given the new search direction, the line search is formulated as follows

λk =
min

λ
φ
(
x(k) + λs(k)

)
(139)

Solving the one dimensional optimization problem yields

λk =
bT s(k)

(s(k))
T

As(k)
(140)

Thus, the conjugate gradient search algorithm for solving Ax = b is summarized in Table

(6).

If conjugate gradient method is used for solving the optimization problem, it can be

theoretically shown that the minimum can be reached in n steps. In practice, however, we

require more than n steps to achieve φ(x) <ε due to the rounding off errors in computation

of the conjugate directions. Nevertheless, when n is large, this approach can generate a

reasonably accurate solution with considerably less computations.
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Table 6: Conjugate Gradient Algorithm to Solve Linear Algebraic Equations
INITIALIZE: x(0), ε, kmax, λ

(0), δ

k = 0

g(0) = b−Ax(0)

s(−1) = 0

WHILE [(δ > ε) AND (k < kmax)]

βk = −
[
g(k)
]T

As(k−1)

[s(k−1)]
T

As(k−1)

s(k) = βks
(k−1) + g(k)

λk = − bT s(k)

(s(k))
T

As(k)

x(k+1) = x(k) + λk s(k)

g(k+1) = b−Ax(k+1)

δ =

∥∥g(k+1) − g(k)
∥∥
2

‖g(k+1)‖2
k = k + 1

END WHILE

7 Matrix Conditioning and Behavior of Solutions

One of the important issue in computing solutions of large dimensional linear system of

equations is the round-off errors caused by the computer. Some matrices are well conditioned

and the computations proceed smoothly while some are inherently ill conditioned, which

imposes limitations on how accurately the system of equations can be solved using any

computer or solution technique. We now introduce measures for assessing whether a given

system of linear algebraic equations is inherently ill conditioned or well conditioned.

Normally any computer keeps a fixed number of significant digits. For example, consider

a computer that keeps only first three significant digits. Then, adding

0.234 + 0.00231→ 0.236

results in loss of smaller digits in the smaller number. When a computer can commits

millions of such errors in a complex computation, the question is, how do these individual

errors contribute to the final error in computing the solution? Suppose we solve for Ax = b

using LU decomposition, the elimination algorithm actually produce approximate factors

L′ and U′ .Thus, we end up solving the problem with a wrong matrix, i.e.

A + δA = L′U′ (141)

34



instead of right matrixA = LU. In fact, due to round off errors inherent in any computation

using computer, we actually end up solving the equation

(A + δA)(x+δx) = b+δb (142)

The question is, how serious are the errors δx in solution x, due to round off errors in

matrix A and vector b? Can these errors be avoided by rearranging computations or are

the computations inherent ill-conditioned? In order to answer these questions, we need to

develop some quantitative measure for matrix conditioning.
The following section provides motivation for developing a quantitative measure for ma-

trix conditioning. In order to develop such a index, we need to define the concept of norm of a

m×n matrix. The formal definition of matrix condition number and methods for computing
it are presented in the later sub-sections.

7.1 Motivation [3]

In many situations, if the system of equations under consideration is numerically well
conditioned, then it is possible to deal with the menace of round off errors by re-arranging
the computations. If the system of equations is inherently an ill conditioned system, then
the rearrangement trick does not help. Let us try and understand this by considering two

simple examples and a computer that keeps only three significant digits.

Consider the system (System-1)[
0.0001 1

1 1

][
x1

x2

]
=

[
1

2

]
(143)

If we proceed with Gaussian elimination without maximal pivoting , then the first elimination

step yields [
0.0001 1

0 −9999

][
x1

x2

]
=

[
1

−9998

]
(144)

and with back substitution this results in

x2 = 0.999899 (145)

which will be rounded off to

x2 = 1 (146)

in our computer which keeps only three significant digits. The solution then becomes[
x1 x2

]T
=
[

0.0 1
]

(147)
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However, using maximal pivoting strategy the equations can be rearranged as[
1 1

0.0001 1

][
x1

x2

]
=

[
2

1

]
(148)

and the Gaussian elimination yields[
1 1

0 0.9999

][
x1

x2

]
=

[
2

0.9998

]
(149)

and again due to three digit round off in our computer, the solution becomes[
x1 x2

]T
=
[

1 1
]

Thus, when A is a well conditioned numerically and Gaussian elimination is employed, the

main reason for blunders in calculations is wrong pivoting strategy. If maximum pivoting

is used then natural resistance of the system of equations to round-off errors is no longer

compromised.

Now, to understand diffi culties associated with ill conditioned systems, consider an-
other system (System-2) [

1 1

1 1.0001

][
x1

x2

]
=

[
2

2

]
(150)

By Gaussian elimination[
1 1

0 0.0001

][
x1

x2

]
=

[
2

0

]
=⇒

[
x1

x2

]
=

[
2

0

]
(151)

If we change R.H.S. of the system 2 by a small amount[
1 1

1 1.0001

][
x1

x2

]
=

[
2

2.0001

]
(152)

[
1 1

0 0.0001

][
x1

x2

]
=

[
2

0.0001

]
=⇒

[
x1

x2

]
=

[
1

1

]
(153)

Note that change in the fifth digit of second element of vector b was amplified to change

in the first digit of the solution. Here is another example of an illconditioned matrix [[2]].

Consider the following system

Ax =


10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

x =


32

23

33

31

 (154)
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whose exact solution is x =
[

1 1 1 1
]T
. Now, consider a slightly perturbed system

A +


0 0 0.1 0.2

0.08 0.04 0 0

0 −0.02 −0.11 0

−0.01 −0.01 0 −0.02


x =


32

23

33

31

 (155)

This slight perturbation in A matrix changes the solution to

x =
[
−81 137 −34 22

]T
Alternatively, if vector b on the R.H.S. is changed to

b=
[

31.99 23.01 32.99 31.02
]T

then the solution changes to

x =
[

0.12 2.46 0.62 1.23
]T

Thus, matrices A in System 2 and in equation (154) are ill conditioned. Hence, no numer-
ical method can avoid sensitivity of these systems of equations to small permutations, which

can result even from truncation errors. The ill conditioning can be shifted from one place to

another but it cannot be eliminated.

7.2 Condition Number [3]

Condition number of a matrix is a measure to quantify matrix Ill-conditioning. Consider

system of equations given asAx = b.We examine two situations: (a) errors in representation

of vector b and (b) errors in representation of matrix A.

7.2.1 Case: Perturbations in vector b [3]

Consider the case when there is a change in b,i.e., b changes to b + δb in the process of

numerical computations. Such an error may arise from experimental errors or from round

off errors. This perturbation causes a change in solution from x to x + δx, i.e.

A(x + δx) = b + δb (156)

By subtracting Ax = b from the above equation we have

Aδx = δb (157)
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To develop a measure for conditioning of matrix A, we compare relative change/error in

solution,i.e. ||δx|| / ||x|| to relative change in b ,i.e. ||δb|| / ||b||. To derive this relationship,
we consider the following two inequalities

δx = A−1δb⇒ ||δx|| ≤ ||A−1|| ||δb|| (158)

Ax = b⇒ ||b|| = ||Ax|| ≤ ||A|| ||x|| (159)

which follow from the definition of induced matrix norm. Combining these inequalities, we

can write

||δx|| ||b|| ≤ ||A−1|| ||A|| ||x|| ||δb|| (160)

⇒ ||δx||
||x|| ≤ (||A−1|| ||A||) ||δb||||b|| (161)

⇒ ||δx||/||x||||δb||/||b|| ≤ ||A
−1|| ||A|| (162)

It may be noted that the above inequality holds for any vectors b and δb. The number

c(A) = ||A−1|| ||A|| (163)

is called as condition number of matrix A. The condition number gives an upper bound

on the possible amplification of errors in b while computing the solution [3].

7.2.2 Case: Perturbation in matrix A[3]

Suppose ,instead of solving for Ax = b, due to truncation errors, we end up solving

(A + δA)(x + δx) = b (164)

Then, by subtracting Ax = b from the above equation we obtain

Aδx + δA(x + δx) = 0 (165)

⇒ δx = −A−1δA(x + δx) (166)

Taking norm on both the sides, we have

||δx|| = ||A−1δA(x + δx)|| (167)

||δx|| ≤ ||A−1|| ||δA|| ||x + δx| (168)
||δx||
||x + δx|| ≤ (||A−1|| ||A||) ||δA||||A|| (169)

||δx||/||x + δx||
||δA||/||A|| ≤ c(A) = ||A−1|| ||A|| (170)
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Again,the condition number gives an upper bound on % change in solution to % error A.

In simple terms, the condition number of a matrix tells us how serious is the error in

solution ofAx = b due to the truncation or round offerrors in a computer. These inequalities

mean that round off error comes from two sources

• Inherent or natural sensitivity of the problem,which is measured by c(A)

• Actual errors δb or δA.

It has been shown that the maximum pivoting strategy is adequate to keep (δA) in

control so that the whole burden of round off errors is carried by the condition number c(A).

If condition number is high (>1000), the system is ill conditioned and is more sensitive to

round offerrors. If condition number is low (<100) system is well conditioned and you should

check your algorithm for possible source of errors.

7.2.3 Computations of condition number

Let λn denote the largest magnitude eigenvalue of matrix A and λ1 denote the smallest

magnitude eigen value of A. Then, we know that

||A||22 = ρ(ATA) = λn (171)

Also,

||A−1||22 = ρ[(A−1)TA−1] = ρ
[
(AAT )−1

]
(172)

This follows from identity

(A−1A)T = I

AT (A−1)T = I

(AT )−1 = (A−1)T (173)

Now, if λ is eigenvalue of ATA and v is the corresponding eigenvector, then

(ATA)v = λv (174)

AAT (Av) = λ(Av) (175)

λ is also eigenvalue of AAT and (Av) is the corresponding eigenvector. Thus, we can write

||A−1||22 = ρ
[
(AAT )−1

]
= ρ

[
(ATA)−1

]
(176)

Also, since AAT is a symmetric positive definite matrix, we can diagonalize it as

ATA = ΨΛΨT (177)
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⇒ (ATA)−1 = [ΨΛΨT ]−1 = (ΨT )−1
[
Λ−1

]
Ψ−1 = ΨΛ−1ΨT

as Ψ is a unitary matrix. Thus, if λ is eigen value of ATA then 1/λ is eigen value of

(ATA)−1. If λ1smallest eigenvalue of ATA then 1/λ1 is largest magnitude eigenvalue of

ATA

⇒ ρ[(ATA)−1] = 1/ λ1

Thus, the condition number of matrix A can be computed using 2-norm as

c2(A) = ||A||2 ||A−1||2 = (λn/λ1)
1/2

where λn and λ1 are largest and smallest magnitude eigenvalues of ATA.

The condition number can also be estimated using any other norm. For example, if we

use ∞− norm, then
c∞(A) = ||A||∞ ||A−1||∞

Estimation of condition number by this approach, however, requires computation of A−1,

which can be unreliable if A is ill conditioned.

Example 10 [8]Consider the Hilbert matrix discussed in the module Problem Discretization
using Approximation Theory. These matrices, which arise in simple polynomial approxima-

tion are notoriously ill conditioned and c(Hn)→∞ as n→∞. For example, consider

H3 =

 1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 ; H−13 =

 9 −36 30

−36 192 −180

30 −180 180


‖H3‖1 = ‖H3‖∞ = 11/6 and

∥∥H−13 ∥∥1 =
∥∥H−13 ∥∥∞ = 408

Thus, condition number can be computed as c1(H3) = c∞(H3) = 748. For n = 6, c1(H3)

= c∞(H3) = 29× 106, which is extremely bad.

Even for n = 3, the effects of rounding off can be quite serious. For, example, the solution

of

H3x =

 11/6

13/12

47/60


is x =

[
1 1 1

]T
. If we round off the elements of H3 to three significant decimal digits,

we obtain  1 0.5 0.333

0.5 0.333 0.25

0.333 0.25 0.2

x =

 1.83

1.08

0.783
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then the solution changes to x + δx =
[

1.09 0.488 1.491
]T
. The relative perturbation in

elements of matrix H3 does not exceed 0.3%. However, the solution changes by 50%! The

main indicator of ill-conditioning is that the magnitudes of the pivots become very small when

Gaussian elimination is used to solve the problem.

Example 11 Consider matrix

A =

 1 2 3

4 5 6

7 8 9


This matrix is near singular with eigen values (computed using Scilab)

λ1 = 16.117 ;λ2 = −1.1168 ; λ3 = −1.3× 10−15

has the condition number of c2(A) = 3.8131× 1016. If we attempt to compute inverse of this

matrix using Scilab, we get following result

A−1 = 1016 ×

 −0.4504 0.9007 −0.4504

0.9007 −1.8014 0.9007

−0.4504 0.9007 −0.4504


with a warning: ’Matrix is close to singular or badly scaled.’ The diffi culties in computing

inverse of this matrix are apparent if we further compute product A×A−1, which yields

A×A−1 =

 2 0 2

8 0 0

16 0 8


On the other hand, consider matrix

B = 10−17 ×

 1 2 1

2 1 2

1 1 3


with eigenvalues

λ1 = 4.73× 10−17 ;λ2 = −1× 10−17 ; λ3 = 1.26× 10−17

The eigenvalues are ’close to zero’ the matrix is almost like a null matrix. However, the

condition number of this matrix is c2(B) = 5.474. If we proceed to compute of B−1 using

Scilab, we get

B−1 = 1016 ×

 −1.67 8.33 −5

6.67 −3.33 0

−1.67 −1.67 5


and B×B−1yields I, i.e. identity matrix.
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Thus, it is important to realize that each system of linear equations has a inherent

character, which can be quantified using the condition number of the associated matrix.

The best of the linear equation solvers cannot overcome the computational diffi culties posed

by inherent ill conditioning of a matrix. As a consequence, when such ill conditioned matrices

are encountered, the results obtained using any computer or any solver are unreliable.

8 Summary

In these lecture notes, we have developed methods for effi ciently solving large dimensional

linear algebraic equations. To begin with, we discuss geometric conditions for existence of

the solutions. The direct methods for dealing with sparse matrices are discussed next. Iter-

ative solution schemes and their convergence characteristics are discussed in the subsequent

section. The concept of matrix condition number is then introduced to analyze susceptibility

of a matrix to the round-off errors.

9 Appendix A: Behavior of Solutions of Linear Differ-

ence Equations

Consider difference equation of the form

z(k+1) = Bz(k) (178)

where z ∈ Rn and B is a n × n matrix. Starting from an initial condition z(0), we get a

sequence of vectors
{
z(0), z(1), ..., z(k), ...

}
such that

z(k) = Bkz(0)

for any k. Equations of this type are frequently encountered in numerical analysis. We

would like to analyze asymptotic behavior of equations of these type without solving them

explicitly.

To begin with, let us consider scalar linear iteration scheme

z(k+1) = βz(k) (179)

where z(k) ∈ R and β is a real scalar. It can be seen that

z(k) = (β)kz(0) → 0 as k →∞ (180)

42



if and only if |β| < 1.To generalize this notation to a multidimensional case, consider equation

of type (178) where z(k) ∈ Rn. Taking motivation from the scalar case, we propose a solution

to equation (178) of type

z(k) = λkv (181)

where λ is a scalar and v ∈ Rn is a vector. Substituting equation (181) in equation (178),

we get

λk+1v = B(λkv) (182)

or λk (λI −B) v = 0 (183)

Since we are interested in a non-trivial solution, the above equation can be reduced to

(λI −B) v = 0 (184)

where v 6= 0. Note that the above set of equations has n equations in (n + 1)unknowns

(λ and n elements of vector v). Moreover, these equations are nonlinear. Thus, we need to

generate an additional equation to be able to solve the above set exactly. Now, the above

equation can hold only when the columns of matrix (λI −B) are linearly dependent and v

belongs to null space of (λI −B) . If columns of matrix (λI −B) are linearly dependent,

matrix (λI −B) is singular and we have

det (λI −B) = 0 (185)

Note that equation (185) is nothing but the characteristic polynomial of matrix A and its

roots are called eigenvalues of matrix A. For each eigenvalue λi we can find the corresponding

eigen vector v(i) such that

Bv(i) = λiv
(i) (186)

Thus, we get n fundamental solutions of the form (λi)
k v(i) to equation (178) and a general

solution to equation (178) can be expressed as linear combination of these fundamental

solutions

z(k) = α1 (λ1)
k v(1) + α2 (λ2)

k v(2) + .....+ αn (λn)k v(n) (187)

Now, at k = 0 this solution must satisfy the condition

z(0) = α1v
(1) + (α2)

k v(2) + .....+ αnv
(n) (188)

=
[

v(1) v(2) .... v(n)
] [

α1 α2 .... αn

]T
(189)

= Ψα (190)
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where Ψ is a n × n matrix with eigenvectors as columns and α is a n × 1 vector of n

coeffi cients. Let us consider the special case when the eigenvectors are linearly independent.

Then, we can express α as

α =Ψ−1z(0) (191)

Behavior of equation (187) can be analyzed as k → ∞.Contribution due to the i’th funda-
mental solution (λi)

k v(i) → 0 if and only if |λi| < 1.Thus, z(k) → 0 as k → ∞ if and only

if

|λi| < 1 for i = 1, 2, ....n (192)

If we define spectral radius of matrix A as

ρ(B) =
max

i
|λi| (193)

then, the condition for convergence of iteration equation (178) can be stated as

ρ(B) < 1 (194)

Equation (187) can be further simplified as

z(k) =
[

v(1) v(2) .... v(n)
]

(λ1)
k 0 ..... 0

0 (λ2)
k 0 ...

.... .... ..... ....

0 .... 0 (λn)k



α1

α2

...

αn

 (195)

= Ψ


(λ1)

k 0 ..... 0

0 (λ2)
k 0 ...

.... .... ..... ....

0 .... 0 (λn)k

Ψ−1z(0) = Ψ (Λ)k Ψ−1z(0) (196)

where Λ is the diagonal matrix

Λ =


λ1 0 ..... 0

0 λ2 0 ...

.... .... ..... ....

0 .... 0 λn

 (197)

Now, consider set of n equations

Bv(i) = λiv
(i) for (i = 1, 2, ....n) (198)
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which can be rearranged as

Ψ =
[

v(1) v(2) .... v(n)
]

BΨ =


λ1 0 ..... 0

0 λ2 0 ...

.... .... ..... ....

0 .... 0 λn

Ψ (199)

or B = ΨΛΨ−1 (200)

Using above identity, it can be shown that

Bk =
(
ΨΛΨ−1

)k
= Ψ (Λ)k Ψ−1 (201)

and the solution of equation (178) reduces to

z(k) = Bkz(0) (202)

and z(k) → 0 as k → ∞ if and only if ρ(B) < 1. The largest magnitude eigen value, i.e.,

ρ(B) will eventually dominate and determine the rate at which z(k) → 0̄. The result proved

in this section can be summarized as follows:

Theorem 12 A sequence of vectors
{
z(k) : k = 0, 1, , 2, ....

}
generated by the iteration scheme

z(k+1) = Bz(k)

where z ∈Rn and B ∈ Rn×Rn, starting from any arbitrary initial condition z(0) will converge

to limit z∗ = 0̄ if and only if

ρ(B) < 1

Note that computation of eigenvalues is a computationally intensive task. The following

theorem helps in deriving a suffi cient conditions for convergence of linear iterative equations.

Theorem 13 For a n × n matrix B, the following inequality holds for any induced matrix

norm

ρ(B) ≤ ‖B‖ (203)

Proof. Let λi be eigen value of B and v(i) be the corresponding eigenvector. Then, we can

write ∥∥∥Bv(i)
∥∥∥ =

∥∥λiv(i)∥∥ = |λi|
∥∥v(i)∥∥ (204)
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for i = 1, 2, ..., n. From these equations, it follows that

ρ(B) =
max

i
|λi| =

max

i

∥∥∥Bv(i)
∥∥∥

‖v(i)‖ (205)

Using the definition of the induced matrix norm, we have

‖Bz‖
‖z‖ ≤ ‖B‖ (206)

for any z ∈Rn. Thus, it follows that

ρ(B) =
max

i

∥∥∥Bv(i)
∥∥∥

‖v(i)‖ ≤ ‖B‖ (207)

Since ρ(B) ≤ ‖B‖ < 1 ⇒ ρ(B) < 1, a suffi cient condition for convergence of iterative

scheme can be derived as follows

‖B‖ < 1 (208)

The above suffi cient condition is more useful from the viewpoint of computations as ‖B‖1
and ‖B‖∞ can be computed quite easily. On the other hand, the spectral radius of a large

matrix can be comparatively diffi cult to compute.

10 Appendix B: Theorems on Convergence of Iterative

Schemes

Theorem 2 [2]: A suffi cient condition for the convergence of Jacobi and Gauss-Seidel meth-
ods is that the matrix A of linear system Ax = b is strictly diagonally dominant.

Proof. For Jacobi method, we have

S−1T = −D−1 [L + U] (209)

=



0 −a12
a11

..... −a1n
a11

−a12
a22

0 ..... ....

..... ..... .... − an−1,n
an−1,n−1

− a12
ann

..... ..... 0


(210)
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As matrix A is diagonally dominant, we have

n∑
j=1(j 6=i)

|aij| < |aii| for i = 1, 2., ...n (211)

⇒
n∑

j=1(j 6=i)

∣∣∣∣aijaii
∣∣∣∣ < 1 for i = 1, 2., ...n (212)

∥∥S−1T∥∥∞ =
max

i

 n∑
j=1(j 6=i)

∣∣∣∣aijaii
∣∣∣∣
 < 1 (213)

Thus, Jacobi iteration converges if A is diagonally dominant.

For Gauss Seidel iterations, the iteration equation for i’th component of the vector is

given as

x
(k+1)
i =

(
1

aii

)[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
(214)

Let x∗ denote the true solution of Ax = b. Then, we have

x∗i =

(
1

aii

)[
bi −

i−1∑
j=1

aijx
∗
j −

n∑
j=i+1

aijx
∗
j

]
(215)

Subtracting (215) from (214), we have

x
(k+1)
i − x∗i =

(
1

aii

)[ i−1∑
j=1

aij

(
x∗j − x

(k+1)
j

)
+

n∑
j=i+1

aij

(
x∗j − x

(k)
j

)]
(216)

or ∣∣∣x(k+1)i − x∗i
∣∣∣ ≤ [ i−1∑

j=1

∣∣∣∣aijaii
∣∣∣∣ ∣∣∣(x∗j − x(k+1)j

)∣∣∣+
n∑

j=i+1

∣∣∣∣aijaii
∣∣∣∣ ∣∣∣(x∗j − x(k)j )∣∣∣

]
(217)

Since ∥∥x∗ − x(k)
∥∥
∞ =

max

j

∣∣∣(x∗j − x(k)j )∣∣∣
we can write ∣∣∣x(k+1)i − x∗i

∣∣∣ ≤ pi
∥∥x∗ − x(k+1)

∥∥
∞ + qi

∥∥x∗ − x(k)
∥∥
∞ (218)

where

pi =
i−1∑
j=1

∣∣∣∣aijaii
∣∣∣∣ ; qi =

n∑
j=i+1

∣∣∣∣aijaii
∣∣∣∣ (219)

Let s be value of index i for which∣∣x(k+1)s − x∗s
∣∣ =

max

j

∣∣∣(x∗j − x(k+1)j

)∣∣∣ (220)
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Then, assuming i = s in inequality (218), we get∥∥x∗ − x(k+1)
∥∥
∞ ≤ pi

∥∥x∗ − x(k+1)
∥∥
∞ + qi

∥∥x∗ − x(k)
∥∥
∞ (221)

or ∥∥x∗ − x(k+1)
∥∥
∞ ≤

qs
1− ps

∥∥x∗ − x(k)
∥∥
∞ (222)

Let

µ =
max

j

qj
1− pj

(223)

∥∥x∗ − x(k+1)
∥∥
∞ ≤

qs
1− ps

∥∥x∗ − x(k)
∥∥
∞ (224)

then it follows that ∥∥x∗ − x(k+1)
∥∥
∞ ≤ µ

∥∥x∗ − x(k)
∥∥
∞ (225)

Now, as matrix A is diagonally dominant, we have

0 < pi < 1 and 0 < qi < 1 (226)

0 < pi + qi =
n∑

j=1(j 6=i)

∣∣∣∣aijaii
∣∣∣∣ < 1 (227)

Let

β =
max

i

 n∑
j=1(j 6=i)

∣∣∣∣aijaii
∣∣∣∣
 (228)

Then, we have

pi + qi ≤ β < 1 (229)

It follows that

qi ≤ β − pi (230)

and

µ =
qi

1− pi
≤ β − pi

1− pi
≤ β − piβ

1− pi
= β < 1 (231)

Thus, it follows from inequality (225) that∥∥x∗ − x(k)
∥∥
∞ ≤ µk

∥∥x∗ − x(0)
∥∥
∞

i.e. the iteration scheme is a contraction map and

lim

k →∞
x(k) = x∗
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Theorem 3 [5]: The Gauss-Seidel iterations converge if matrix A is symmetric and

positive definite.

Proof. For Gauss-Seidel method, when matrix A is symmetric, we have

S−1T = (L + D)−1(−U) = −(L + D)−1(LT )

Now, let e represent unit eigenvector of matrix S−1T corresponding to eigenvalue λ, i.e.

−(L + D)−1(LT )e = λe

or LTe = −λ(L + D)e

Taking inner product of both sides with e,we have〈
LTe, e

〉
= −λ 〈(L + D)e, e〉

λ = −
〈
LTe, e

〉
〈De, e〉+ 〈Le, e〉 = − 〈e,Le〉

〈De, e〉+ 〈Le, e〉

Defining

α = 〈Le, e〉 = 〈e,Le〉

σ = 〈De, e〉 =
n∑
i=1

aii (ei)
2 > 0

we have

λ = − α

α + σ
⇒ |λ| =

∣∣∣∣ α

α + σ

∣∣∣∣
Note that σ > 0 follows from the fact that trace of matrix A, is positive as eigenvalues of A

are positive. Using positive definiteness of matrix A, we have

〈Ae, e〉 = 〈Le, e〉+ 〈De, e〉+
〈
LTe, e

〉
= σ + 2α > 0

This implies

−α < (σ + α)

Since σ > 0, we can say that

α < (σ + α)

i.e.

|α| < (σ + α)

This implies

|λ| =
∣∣∣∣ α

α + σ

∣∣∣∣ < 1

49



Theorem 4 [3]: For an arbitrary matrix A, the necessary condition for the convergence
of relaxation method is 0 < ω < 2.

Proof. The relaxation iteration equation can be given as

x(k+1) = (D + ωL)−1
[
[(1− ω)D− ωU]x(k) + ω b

]
(232)

Defining

Bω = (D + ωL)−1 [(1− ω)D− ωU] (233)

det(Bω) = det
[
(D + ωL)−1

]
det [(1− ω)D− ωU] (234)

Now, using the fact that the determinant of a triangular matrix is equal to multiplication of

its diagonal elements, we have

det(Bω) = det
[
D−1

]
det [(1− ω)D] = (1− ω)n (235)

Using the result that product of eigenvalues of Bω is equal to determinant of Bω,we have

λ1λ2...λn = (1− ω)n (236)

where λi (i = 1, 2...n) denote eigenvalues of Bω.

|λ1λ2...λn| = |λ1| |λ2| .... |λn| = |(1− ω)n| (237)

It is assumed that iterations converge. Now, convergence criterion requires

λi(Bω) < 1 for i = 1, 2, ...n (238)

⇒ |λ1| |λ2| .... |λn| < 1 (239)

⇒ |(1− ω)n| < 1 (240)

This is possible only if

0 < ω < 2 (241)

The optimal or the best choice of the ω is the one that makes spectral radius ρ(Bω)smallest

possible and gives fastest rate of convergence.
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11 Appendix C: Steepest Descent / Gradient Search

Method

In the module on Problem Discretization using Approximation Theory, we derived the nec-

essary condition for a point x =x to be an extreme point of a twice differentiable scalar

function φ(x) :Rn → R and suffi cient conditions for the extreme point to qualify either as a

minimum or a maximum. The question that needs to be answered in practice is, given φ(x)

how does one locate an extreme point x. A direct approach can be to solve for n simultaneous

equations

∇φ(x) =0 (242)

in n unknowns. When these equations are bell behaved nonlinear functions of x, an iterative

scheme, such as Newton-Raphson method, can be employed. Alternatively, iterative search

schemes can be derived using evaluations of φ(x) and its derivatives. The steepest descent

/ gradient method is the simplest iterative search scheme in the unconstrained optimization

and forms a basis for developing many sophisticated optimization algorithms. In this section,

we discuss details of this numerical optimization approach.

11.1 Gradient / Steepest Descent / Cauchy’s method

Set of vectors x ∈ RNsuch that φ(x) = α where α is a constant, is called the level surface of

φ(x) for value α. By tracing out one by one level surfaces we obtain contour plot (see Figure

2). Suppose x = x(k) is a point lying on one of the level surfaces. If φ(x) is continuous and

differentiable then, using Taylor series expansion in a neighborhood of x(k) we can write

φ(x) = φ(x(k)) +
[
∇φ(x(k))

]T
(x− x(k)) +

1

2
(x− x(k))T

[
∇2φ(x(k))

]
(x− x(k)) + .... (243)

If we neglect the second and higher order terms, we obtained

φ(x) = φ(x(k) + ∆x) ' φ(x(k)) +
[
∇φ(x(k))

]T
∆x = C (244)

∆x = (x− x(k)) (245)

This is equation of the plane tangent to surface φ(x) at point x(k). The equation of level

surface through x(k) is

C = φ(x) = φ(x(k)) (246)

Combining above two equations, the equation of tangent surface at x = x(k) is obtained as

(x− x(k))T∇φ(x(k)) = 0 (247)
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Figure 2: Contour plots (level surfaces) of y = φ(x) and the local tangent and the steepest

descent direction at point (n2,n1)

Thus, gradient at x = x(k) is perpendicular to the level surface passing through φ(x(k)) (See

Figure 2).

We will now show that it points in the direction in which the function increases most

rapidly, and in fact, ∇φ(x(k)) is the direction of maximum slope. If[
∇φ(x(k))

]T
∆x < 0

then

φ(x(k) + ∆x) < φ(x(k)) (248)

and ∆x is called as descent direction. Suppose we fix our selves to unit sphere in the

neighborhood of x = x(k) i.e. set of all x such that ‖∆x‖ ≤ 1 and want to find direction ∆x

such that ∆φ(x)T∆x algebraically minimum. Using Cauchy-Schwartz inequality together

with ‖∆x‖ ≤ 1, we have∣∣∣[∇φ(x(k))
]T

∆x
∣∣∣ ≤ ∥∥∇φ(x(k))

∥∥ ‖∆x‖ ≤
∥∥∇φ(x(k))

∥∥ (249)

This implies

−
∥∥∇φ(x(k))

∥∥ ≤ [∇φ(x(k))
]T

∆x ≤
∥∥∇φ(x(k))

∥∥ (250)
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and minimum value
[
∇φ(x(k))

]T
∆x can attain when ∆x is restricted within the unit ball

equals −
∥∥∇φ(x(k))

∥∥ . In fact, the equality will hold if and only if ∆x is chosen colinear with

∇φ(x(k)). Let g(k) denote unit vector along the -ve of the gradient direction, i.e.

g(k) = − ∇φ(x(k))

‖∇φ(x(k))‖ (251)

Then, g(k) is the direction of steepest or maximum descent in which φ(x(k) + ∆x)− φ(x(k))

reduces at the maximum rate. While these arguments provides us with the local direction

for the steepest descent, they does not give any clue on how much we should move in that

direction so that the function φ(x) continues to decresae. To arrive at an optimal step size,

the subsequent guess is constructed as follows

x(k+1) = x(k) + λkg
(k) (252)

and the step size λk is determined by solving the following one dimensional minimization

(line search) problem

λk =
min

λ
φ
(
x(k) + λg(k)

)
There are several numerical approaches available for solving this one dimensional optimiza-

tion problem (ref [9]). An approach based on cubic polynomial interpolation is presented in

the next sub-section. The iterative gradient based search algorithm can be summarized as

in Table 7.

Alternate criteria which can be used for termination of iterations are as follows∥∥x(k+1) − x(k)
∥∥

‖x(k+1)‖ ≤ ε1

The Method of steepest descent may appear to be the best unconstrained minimization

method. However, due to the fact that steepest descent is a local property, this method is

not effective in many problems. If the objective function are distorted, then the method can

be hopelessly slow.

11.2 Line Search: One Dimensional Optimization

In any multi-dimensional minimization problem, at each iteration, we have to solve a one

dimensional minimization problem of the form

min

λ
φ(λ) =

min

λ
φ
(
x(k) + λs(k)

)
(253)
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Table 7: Gradient Search Algorithm
INITIALIZE: x(0), ε, kmax, λ

(0), δ

k = 0

g(0) = − ∇φ(x(0))

‖∇φ(x(0))‖
WHILE [(δ > ε) AND (k < kmax)]

λk =
min

λ
φ
(
x(k) + λg(k)

)
x(k+1) = x(k) + λk g(k)

g(k+1) = − ∇φ(x(k+1))

‖∇φ(x(k+1))‖

δ =

∥∥∇φ(x(k+1))−∇φ(x(k))
∥∥
2

‖∇φ(x(k+1))‖2
k = k + 1

END WHILE

where s(k) is the descent (search) direction. (In gradient search method, s(k) = g(k), i.e. -ve

of the gradient direction.) There are many ways of solving this problem numerically ([9]).

In this sub-section, we discuss the cubic interpolation method, which is one of the popular

techniques for performing the line search.

The first step in the line search is to find bounds on the optimal step size λ∗. These are

established by finding two points, say α and β, such that the slope dφ/dλ

dφ

dλ
=

[
∂φ(x(k) + λs(k))

∂(x(k) + λs(k))

]T
∂(x(k) + λs(k))

∂λ
(254)

=
(
∇φ(x(k) + λs(k))

)T
s(k) (255)

has opposite signs at these points. We know that at λ = 0,

dφ(0)

dλ
=
(
∇φ(x(k))

)T
s(k) < 0 (256)

as s(k) is assumed to be a descent direction. Thus, we take α corresponding to λ = 0 and

try to find a point λ = β such that dφ/dλ > 0. The point β can be taken as the first value

out of λ = h, 2h, 4h, 8h, .... for which dφ/dλ > 0,where h is some pre-assigned initial step

size. As dφ/dλ changes sign in the interval [0, β], the optimum λ∗ is bounded in the interval

[0, β].

The next step is to approximate φ(λ) over interval [0, β] by a cubic interpolating poly-

nomial for the form

φ(λ) = a+ bλ+ cλ2 + dλ3 (257)
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The parameters a and b be computed as

φ(0) = a = φ(x(k))

dφ(0)

dλ
= b =

(
∇φ(x(k))

)T
s(k)

The parameters c and d can be computed by solving

φ(β) = a+ bβ + cβ2 + dβ3

dφ(β)

dλ
= b+ 2cβ + 3dβ2

i.e. by solving [
β2 β3

2β 3β2

][
c

d

]
=

[
φ
(
x(k) + βs(k)

)
− a− βb(

s(k)
)T ∇φ (x(k) + βs(k)

)
− b

]

The application of necessary condition for optimality yields

dφ

dλ
= b+ 2cλ+ 3dλ2 = 0 (258)

i.e.

λ∗ =
−c±

√
(c2 − 3bd)

3d
(259)

One of the two values correspond to the minimum. The suffi ciency condition for minimum

requires
d2φ

dλ2
= 2c+ 6dλ∗ > 0 (260)

The fact that dφ/dλ has opposite sign at λ = 0 and λ = β ensures that the equation 258

does not have imaginary roots.
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Table 8: Line Search using Cubic Interpolation Algorithm
INITIALIZE: x(k), s(k), h

Step 1: Find β

β = h

WHILE [dφ(β)/dλ < 0]

β = 2β

END WHILE

Step 2: Solve for a, b, c and d using x(k), s(k) and β

Step 3: Find λ∗ using suffi cient condition for optimality

Exercise

1. The true solution Ax = b is slightly different from the elimination solution to LUx0 =

b; A − LU misses zero matrix because of round off errors. One possibility is to do

everything in double precision, but a better and faster way is iterative refinement:

Compute only one vector r = b − Ax0 in double precision, solveLUy = r,and add

correction y to x0 to generate an improved solution x1 = x0 + y.

Problem:Multiply x1 = x0 + y, byLU, write the result as splitting Sx1 = Tx0 + b, and

explain why T is extremely small. This single step bring almost close to x.

2. If A is orthonormal (unitary) matrix, show that ||A|| = 1 and also c(A) = 1. Orthog-

onal matrices and their multiples(αA) are the only perfectly conditioned matrices.

3. Find a vector x orthogonal to row space, and a vector y orthogonal to column space,

of

A =

 1 2 1

2 4 3

3 6 4


4. Show that vector x− y is orthogonal to vector x + y if and only if ||x|| = ||y||.

5. For a positive definite matrix A, the Cholensky decomposition is A = L D LT = RRT

where R = LD1/2. Show that the condition number of R is square root of condition

number of A. It follows that Gaussian elimination needs no row exchanges for a positive

definite matrix; the condition number does not deteriorate, since c(A) = c(RT )c(R).

6. Show that for a positive definite symmetric matrix, the condition number can be ob-

tained as

c(A) = λmax(A)/λmin(A)
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7. Prove the following inequalities/ identities

‖A +B‖ ≤ ‖A‖+ ‖B‖

‖AB‖ ≤ ‖A‖ ‖B‖

C(AB) ≤ C(A)C(B)

‖A‖2 =
∥∥AT

∥∥
2

8. Show that λmax, or even max |λi| , is not a satisfactory norm of a matrix, by finding

a 2× 2 counter examples to following inequalities

λmax(A +B) ≤ λmax(A) + λmax(B)

λmax(AB) ≤ λmax(A)λmax(B)

9. For the positive definite matrix

A =

[
2 −1

−1 2

]
compute the condition number C(A) and find the right hand side b of equationAx = b

and perturbation δb such that the error is worst possible, i.e.

‖δx‖
‖x‖ = C(A)

‖δb‖
‖b‖

10. A polynomial

y = a0 + a1x+ a2x
2 + a3x

3

passes through point (3, 2), (4, 3), (5, 4) and (6, 6) in an x-y coordinate system. Setup

the system of equations and solve it for coeffi cients a0 to a3 by Gaussian elimination.

The matrix in this example is (4 X 4 ) Vandermonde matrix. Larger matrices of this

type tend to become ill-conditioned.

11. Solve using Gauss Jordan method.

u+ v + w = −2

3u+ 3v − w = 6

u− v + w = −1

to obtain A−1. What coeffi cient of v in the third equation, in place of present −1 ,

would make it impossible to proceed and force the elimination to break down?
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12. Decide whether vector b belongs to column space spanned by x(1),x(2), ....

(a) x(1) = (1, 1, 0); x(2) = (2, 2, 1); x(3) = (0, 2, 0); b = (3.4.5)

(b) x(1) = (1, 2, 0); x(2) = (2, 5, 0); x(3) = (0, 0, 2); x(4) = (0, 0, 0); any b

13. Find dimension and construct a basis for the four fundamental subspaces associated

with each of the matrices.

A1 =

[
0 1 4 0

0 2 8 0

]
; U2 =

[
0 1 4 0

0 0 0 0

]

A2 =

 0 1 0

0 0 1

0 0 0

 ; A3 =

 1 2 0 1

0 1 1 0

1 2 0 1

 ; U1 =

 1 2 0 1

0 1 1 0

1 2 0 1


14. Find a non -zero vector x∗ orthogonal to all rows of

A =

 1 2 1

2 4 3

3 6 4


(In other words, find Null space of matrix A.) If such a vector exits, can you claim that

the matrix is singular? Using above A matrix find one possible solution x for Ax = b

when b = [ 4 9 13 ]T . Show that if vector x is a solution of the system Ax = b,

then (x+αx∗) is also a solution for any scalar α, i.e.

A(x + αx∗) = b

Also, find dimensions of row space and column space of A.

15. If product of two matrices yields null matrix, i.e. AB = [0], show that column space

of B is contained in null space of A and the row space of A is in the left null space of

B.

16. Why there is no matrix whose row space and null space both contain the vector

x =
[

1 1 1
]T

17. Find a 1× 3 matrix whose null space consists of all vectors in R3 such that x1 + 2x2 +

4x3 = 0. Find a 3× 3 matrix with same null space.
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18. If V is a subspace spanned by  1

1

0

 ;

 1

2

0

 ;

 1

5

0


find matrix A that has V as its row space and matrix B that has V as its null space.

19. Find basis for each of subspaces and rank of matrix A

(a)

A =

 0 1 2 3 4

0 1 2 4 6

0 0 0 1 2

 = LU =

 1 0 0

1 1 0

0 1 1


 0 1 2 3 4

0 0 0 1 2

0 0 0 0 0


(b)

A =


1 0 0 0

2 1 0 0

2 1 1 0

3 2 4 1




1 2 0 1 2 1

0 0 2 2 0 0

0 0 0 0 0 1

0 0 0 0 0 0


20. Consider the following system

A =

[
1 1

1 1 + ε

]

Obtain A−1, det(A) and also solve for [x1 x2 ]T . Obtain numerical values for ε = 0.01,

0.001 and 0.0001. See how sensitive is the solution to change in ε.

21. Consider system

A =

 1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 ; b =

 1

−1

1


where A is Hilbert matrix with aij = 1/(i + j − 1), which is severely ill- conditioned.

Solve using

(a) Gauss-Jordan elimination

(b) exact computations

(c) rounding off each number to 3 figures.

Perform 4 iterations each by
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(a) Jacobi method

(b) Gauss- Seidel method

(c) Successive over-relaxation method with ω = 1.5

Use initial guess x(0) =
[

1 1 1
]T
and compare in each case how close to the x(4) is

to the exact solution. (Use 2-norm for comparison).

Analyze the convergence properties of the above three iterative processes using eigen-

values of the matrix (S−1T ) in each case. Which iteration will converge to the true

solution?

22. The Jacobi iteration for a general 2 by 2 matrix has

A =

[
a b

c d

]
; D =

[
a 0

0 d

]

If A is symmetric positive definite, find the eigenvalues of J = S−1T = D−1(D −A)

and show

that Jacobi iterations converge.

23. It is desired to solve Ax = b using Jacobi and Gauss-Seidel iteration scheme where

A =

 4 2 1

1 5 3

2 4 7

 ; A =

 1 2 −2

1 1 1

2 2 1

 ; A =


−7 1 −2 3

1 8 1 3

−2 1 −5 1

1 0 −1 −3


Will the Jacobi and Gauss-Seidel the iterations converge? Justify your answer. (Hint:

Check for diagonal dominance before proceeding to compute eigenvalues).

24. Given matrix

J =
1

2


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


find powers J2, J3 by direct multiplications. For which matrix A is this a Jacobi

matrix J = I −D−1A ? Find eigenvalues of J .
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25. The tridiagonal n × n matrix A that appears when finite difference method is used

to solve second order PDE / ODE-BVP and the corresponding Jacobi matrix are as

follows

A =


2 −1 0 ... 0

−1 2 −1 ... 0

... ... ... ... ...

0 ... −1 2 −1

0 ... 0 1 2

 ; J =
1

2


0 1 0 ... 0

1 0 1 ... 0

... ... ... ... ...

0 ... 1 0 1

0 ... 0 1 0


Show that the vector

x =
[
sin(πh) sin(2πh) ... sin(nh)

]T
satisfies Jx = λx with eigenvalue λ = cos(πh). Here, h = 1/(n + 1) and hence

sin [(n+ 1)πh] = 0.

Note: The other eigenvectors replace π by 2π, 3π,...., nπ. The other eigenvalues

are cos(2πh), cos(3πh),...... , cos(nπh) all smaller than cos(πh) < 1.
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