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Section 1 : Introduction

 

1 Introduction

Consider set of  nonlinear simultaneous equations of type

-------(1)

-------(2)

where  and  represents a  function vector. This problem may have no
solution, an infinite number of solutions or any finite number of solutions. In the module on
Problem Discretization using Approximation Theory, we have already introduced a basic version
of the Newton's method, in which a sequence of approximate linear transformations is constructed
to solve equation (Fx). In this module, we develop this method further and also discuss the
conditions under which it converges to the solution. In addition, we discuss the following two
approaches that are frequently used for solving nonlinear algebraic equations: (a) method of
successive substitutions and (b) unconstrained optimization. Towards the end of the module, we
briefly touch upon two fundamental issues related to nonlinear algebraic equations, namely (a) the
(local) existence uniqueness of the solutions and (b) the notion of conditioning of nonlinear
algebraic equations.
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7 Matrix Conditioning and Behavior of Solutions

One of the important issue in computing solutions of large dimensional linear system of equations
is the round-off errors caused by the computer. Some matrices are well conditioned and the
computations proceed smoothly while some are inherently ill conditioned, which imposes
limitations on how accurately the system of equations can be solved using any computer or
solution technique. We now introduce measures for assessing whether a given system of linear
algebraic equations is inherently ill conditioned or well conditioned.

Normally any computer keeps a fixed number of significant digits. For example, consider a
computer that keeps only first three significant digits. Then, adding

results in loss of smaller digits in the smaller number. When a computer can commits millions of
such errors in a complex computation, the question is, how do these individual errors contribute to
the final error in computing the solution? Suppose we solve for  using LU decomposition,
the elimination algorithm actually produce approximate factors and Thus, we end up
solving the problem with a wrong matrix, i.e.

--------(141)

instead of right matrix . In fact, due to round off errors inherent in any computation using
computer, we actually end up solving the equation

--------(142)

The question is, how serious are the errors  in solution , due to round off errors in matrix 
and vector ? Can these errors be avoided by rearranging computations or are the computations
inherent ill-conditioned? In order to answer these questions, we need to develop some quantitative
measure for matrix conditioning.

The following section provides motivation for developing a quantitative measure for matrix
conditioning. In order to develop such a index, we need to define the concept of norm of a 

matrix. The formal definition of matrix condition number and methods for computing it are
presented in the later sub-sections.

7.1 Motivation [3]

In many situations, if the system of equations under consideration is numerically well
conditioned, then it is possible to deal with the menace of round off errors by re-arranging the
computations. If the system of equations is inherently an ill conditioned system, then the
rearrangement trick does not help. Let us try and understand this by considering to simple
examples and a computer that keeps only three significant digits.

Consider the system (System-1)

--------(143)
If we proceed with Gaussian elimination without maximal pivoting , then the first elimination step
yields



--------(144)
and with back substitution this results in

--------(145)
which will be rounded off to

--------(146)

in our computer which keeps only three significant digits. The solution then becomes

--------(147)

However, using maximal pivoting strategy the equations can be rearranged as

--------(148)

and the Gaussian elimination yields

--------(149)

and again due to three digit round off in our computer, the solution becomes

Thus, when A is a well conditioned numerically and Gaussian elimination is employed, the main
reason for blunders in calculations is wrong pivoting strategy. If maximum pivoting is used then
natural resistance of the system of equations to round-off errors is no longer compromised.

Now, to understand difficulties associated with ill conditioned systems, consider another system
(System-2)

--------(150)

By Gaussian elimination

--------(151)

If we change R.H.S. of the system 2 by a small amount

--------(152)

--------(153)

Note that change in the fifth digit of second element of vector  was amplified to change in the
first digit of the solution. Here is another example of an illconditioned matrix [Gour]. Consider the
following system



--------(154)

whose exact solution is  Now, consider a slightly perturbed system

--------(155)

This slight perturbation in  matrix changes the solution to

Alternatively, if vector  on the R.H.S. is changed to

then the solution changes to

Thus, matrices A in System 2 and in equation (A4) are ill conditioned. Hence, no numerical
method can avoid sensitivity of these systems of equations to small permutations, which can result
even from truncation errors. The ill conditioning can be shifted from one place to another but it
cannot be eliminated.

7.2 Condition Number [3]

Condition number of a matrix is a measure to quantify matrix Ill-conditioning. Consider system of
equations given as  We examine two situations: (a) errors in representation of vector 
and (b) errors in representation of matrix .

7.2.1 Case: Perturbations in vector b [3]

Consider the case when there is a change in i.e.,  changes to  in the process of
numerical computations. Such an error may arise from experimental errors or from round off
errors. This perturbation causes a change in solution from  to  i.e.

--------(156)

By subtracting  from the above equation we have
--------(157)

To develop a measure for conditioning of matrix  we compare relative change/error in
solution,i.e.  to relative change in  ,i.e.  To derive this relationship, we
consider the following two inequalities



--------(158)

--------(159)

which follow from the definition of induced matrix norm. Combining these inequalities, we can
write

--------(160)

--------(161)

--------(162)

It may be noted that the above inequality holds for any vectors  and . The number
--------(163)

is called as condition number of matrix . The condition number gives an upper bound on the
possible amplification of errors in  while computing the solution Strang.

7.2.2 Case: Perturbation in matrix A[3]

Suppose ,instead of solving for  due to truncation errors, we end up solving
--------(164)

Then, by subtracting  from the above equation we obtain
--------(165)

--------(166)

Taking norm on both the sides, we have

--------(167)
--------(168)
--------(169)

--------(170)

Again,the condition number gives an upper bound on % change in solution to % error A.

In simple terms, the condition number of a matrix tells us how serious is the error in solution of 
 due to the truncation or round off errors in a computer. These inequalities mean that

round off error comes from two sources

Inherent or natural sensitivity of the problem,which is measured by 

Actual errors .

It has been shown that the maximum pivoting strategy is adequate to keep ( ) in control so that
the whole burden of round off errors is carried by the condition number . If condition number
is high (>1000), the system is ill conditioned and is more sensitive to round off errors. If condition



number is low (<100) system is well conditioned and you should check your algorithm for
possible source of errors.

7.2.3 Computations of condition number

Let  denote the largest magnitude eigenvalue of matrix and  denote the smallest
magnitude eigen value of . Then, we know that

--------(171)

Also,

--------(172)

This follows from identity

--------(173)
Now, if is eigenvalue of  and  is the corresponding eigenvector, then

--------(174)

--------(175)

 is also eigenvalue of  and  is the corresponding eigenvector. Thus, we can write

--------(176)

Also, since  is a symmetric positive definite matrix, we can diagonalize it as
--------(177)

as  is a unitary matrix. Thus, if  is eigen value of then is eigen value of 
If smallest eigenvalue of then  is largest magnitude eigenvalue of 

Thus, the condition number of matrix  can be computed using 2-norm as

where and are largest and smallest magnitude eigenvalues of 

The condition number can also be estimated using any other norm. For example, if we use 
 then

Estimation of condition number by this approach, however, requires computation of , which
can be unreliable if  is ill conditioned.

Example 10 TaylorPhilllipsConsider the Hilbert matrix discussed in the module Problem
Discretization using Approximation Theory. These matrices, which arise in simple polynomial
approximation are notoriously ill conditioned and  as  For example, consider



Thus, condition number can be computed as   For n = 6,  
 which is extremely bad.

Even for n = 3, the effects of rounding off can be quite serious. For, example, the solution of

is  If we round off the elements of  to three significant decimal digits, we
obtain

then the solution changes to  The relative perturbation in

elements of matrix  does not exceed 0.3%. However, the solution changes by 50%! The main
indicator of ill-conditioning is that the magnitudes of the pivots become very small when Gaussian
elimination is used to solve the problem.

Example 11Consider matrix

This matrix is near singular with eigen values (computed using )

has the condition number of  If we attempt to compute inverse of this
matrix using Scilab, we get following result

with a warning: 'Matrix is close to singular or badly scaled.' The difficulties in computing inverse
of this matrix are apparent if we further compute product  which yields



On the other hand, consider matrix

with eigen values

The eigenvalues are 'close to zero' the matrix is almost like a null matrix. However, the condition
number of this matrix is  If we proceed to compute of  using Scilab, we get

and yields  i.e. identity matrix.

Thus, it is important to realize that each system of linear equations has a inherent character, which
can be quantified using the condition number of the associated matrix. The best of the linear
equation solvers cannot overcome the computational difficulties posed by inherent ill conditioning
of a matrix. As a consequence, when such ill conditioned matrices are encountered, the results
obtained using any computer or any solver are unreliable.
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