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9 Appendix A: Behavior of Solutions of Linear Difference Equations

Consider difference equation of the form
--------(178)

where  and  is a  matrix. Starting from an initial condition , we get a sequence
of vectors  such that

for any  Equations of this type are frequently encountered in numerical analysis. We would like
to analyze asymptotic behavior of equations of these type without solving them explicitly.

To begin with, let us consider scalar linear iteration scheme
--------(179)

where  and  is a real scalar. It can be seen that

--------(180)

if and only if To generalize this notation to a multidimensional case, consider equation of
type (diffeq) where  Taking motivation from the scalar case, we propose a solution to
equation (diffeq) of type

--------(181)

where  is a scalar and  is a vector. Substituting equation (soln) in equation (diffeq), we
get

--------(182)

--------(183)

Since we are interested in a non-trivial solution, the above equation can be reduced to
--------(184)

where . Note that the above set of equations has equations in  unknowns (  and 
elements of vector  Moreover, these equations are nonlinear. Thus, we need to generate an
additional equation to be able to solve the above set exactly. Now, the above equation can hold
only when the columns of matrix  are linearly dependent and  belongs to null space of 

 If columns of matrix  are linearly dependent, matrix  is singular and
we have

--------(185)

Note that equation (ceq) is nothing but the characteristic polynomial of matrix A and its roots are
called eigenvalues of matrix A. For each eigenvalue  we can find the corresponding eigen
vector  such that

--------(186)

Thus, we get  fundamental solutions of the form  to equation (diffeq) and a general



solution to equation (diffeq) can be expressed as linear combination of these fundamental
solutions

--------(187)

Now, at  this solution must satisfy the condition
--------(188)
--------(189)

--------(190)

where  is a  matrix with eigenvectors as columns and  is a  vector of  coefficients.
Let us consider the special case when the eigenvectors are linearly independent. Then, we can
express  as

--------(191)

Behavior of equation (sol) can be analyzed as Contribution due to the i'th fundamental
solution  if and only if Thus,  as  if and only if

--------(192)

If we define spectral radius of matrix A as

--------(193)

then, the condition for convergence of iteration equation (diffeq) can be stated as
--------(194)

Equation (sol) can be further simplified as

--------(195)

--------(196)

where  is the diagonal matrix

--------(197)

Now, consider set of  equations
--------(198)



Theorem

Theorem

Proof

which can be rearranged as

--------(199 &200)

Using above identity, it can be shown that

--------(201)
and the solution of equation (diffeq) reduces to

--------(202)
and  as  if and only if  The largest magnitude eigen value, i.e.,  will
eventually dominate and determine the rate at which  The result proved in this section
can be summarized as follows:

A sequence of vectors  generated by the iteration scheme

where  and  starting from any arbitrary initial condition  will converge to
limit  if and only if

Note that computation of eigenvalues is a computationally intensive task. The following theorem
helps in deriving a sufficient conditions for convergence of linear iterative equations.

For a  matrix , the following inequality holds for any induced matrix norm

--------(203)

Let  be eigen value of  and  be the corresponding eigenvector. Then, we can write

--------(204)

for  From these equations, it follows that

--------(205)

Using the definition of the induced matrix norm, we have

--------(206)

for any . Thus, it follows that

--------(207)



Since , a sufficient condition for convergence of iterative scheme
can be derived as follows

--------(208)

The above sufficient condition is more useful from the viewpoint of computations as  and 
 can be computed quite easily. On the other hand, the spectral radius of a large matrix can

be comparatively difficult to compute.



Module 2 : Fundamentals of Vector Spaces

Section 6 : Induced Matrix Norms

6. Induced Matrix Norms

We have already mentioned that set of all  matrices with real entries (or complex entries) can be
viewed a linear vector space. In this section, we introduce the concept of induced norm of a matrix,
which plays a vital role in the numerical analysis. A norm of a matrix can be interpreted as amplification
power of the matrix. To develop a numerical measure for ill conditioning of a matrix, we first have to
quantify this amplification power of the matrix.

Definition 51 (Induced Matrix Norm): The induced norm of a  matrix is defined as mapping

from  such that

-------- (96)

In other words,  bounds the amplification power of the matrix i.e.

-------- (97)

The equality holds for at least one non zero vector . An alternate way of defining matrix norm is
as follows

-------- (98)

Defining  as

it is easy to see that these two definitions are equivalent. The following conditions are satisfied for any

matrices 

1.  if  and 

2. .

3. 

4. 

The induced norms, i.e. norm of matrix induced by vector norms on  and , can be interpreted as
maximum gain or amplification factor of the matrix.

6.1 Computation of 2-norm

Now, consider 2-norm of a matrix, which can be defined as follows

-------- (99)

Squaring both sides



 

where  is a symmetric and positive definite matrix. Positive definiteness of matrix  requires
that

-------- (100)

If columns of  are linearly independent, then it implies that

-------- (101)

-------- (102)

Now, a positive definite symmetric matrix can be diagonalized as

-------- (103)

Where is matrix with eigen vectors as columns and  is the diagonal matrix with eigenvalues of 

 on the main diagonal. Note that in this case  is unitary matrix ,i.e.,

-------- (104)

and eigenvectors are orthogonal. Using the fact that  is unitary, we can write

-------- (105)

This implies that

-------- (106)

where  Suppose eigenvalues of  are numbered such that

-------- (107)

Then, we have

-------- (108)

which implies that

-------- (109)

The equality holds only at the corresponding eigenvector of , i.e.,

-------- (110)

Thus, 2 norm of matrix  can be computed as follows

-------- (111)

i.e.

-------- (112)



Remark

where  denotes maximum magnitude eigenvalue or the spectral radius of .

6.2 Other Matrix Norms

Other commonly used matrix norms are

1-norm: Maximum over column sums

-------- (113)

norm: Maximum over row sums

-------- (114)

There are other matrix norms, such as Frobenious norm, which are not induced matrix norms.
Frobenious norm is defined as
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