Advanced Numerical Analysis for Chemical Engineering Mid-Term Examination -1 (2 hrs.)

1. Let X represent set of continuous functions on interval $0 \leq t \leq 1$ with inner product defined as

$$
\langle\mathbf{x}(t), \mathbf{y}(t)\rangle=\int_{0}^{1} w(t) \mathbf{x}(t) \mathbf{y}(t) d t
$$

Given a set of two linearly independent vectors

$$
\mathbf{x}^{(1)}(t)=1 ; \quad \mathbf{x}^{(2)}(t)=t
$$

find orthonormal set of vectors $\mathbf{e}^{(1)}(t)$ and $\mathbf{e}^{(2)}(t)$ if $w(t)=t(1-t)$. (6 marks)
2. Consider system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{lll}
3 & 1 & -2 \\
3 & 1 & -2 \\
3 & 1 & -2
\end{array}\right]
$$

1. What is the dimension of column space of matrix A, i.e. $R(A)$? Find a basis for $R(A)$.
2. What is the dimension of null space of matrix A, i.e. $N(A)$? Find a basis for $R(A)$. (6 marks)
Hint: Note that, for a $n \times n$ matrix A

$$
\begin{aligned}
\operatorname{dim}[R(A)] & =\operatorname{dim}\left[R\left(A^{T}\right)\right] \\
\operatorname{dim}\left[R\left(A^{T}\right)\right]+\operatorname{dim}[N(A)] & =n
\end{aligned}
$$

3. It is proposed to define an inner product as follows

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A \mathbf{y}
$$

Is this a valid definition of inner product? Justify your answer. marks)
3. Application of finite difference method to solve a PDE resulted in a set of linear algebraic equation, $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{llllll}
4 & -1 & 0 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 \\
-1 & 0 & 0 & 4 & -1 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & -1 & 0 & -1 & 4
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
2 \\
2 \\
1 \\
2
\end{array}\right]
$$

It is desired to solve the above equation using Jacobi and Gauss Seidel methods starting from the following initial guess solution

$$
\mathbf{x}^{(0)}=\left[\begin{array}{llllll}
-5 & 2 & -3 & 1 & -3 & 5
\end{array}\right]^{T}
$$

Will the iterations converge in each case? Justify your answer. marks)
4. Consider the following difference equation initial value problem

$$
\mathbf{e}^{(k+1)}=A \mathbf{e}^{(k)} ; A=\left[\begin{array}{ll}
-2 & 1 \\
1 & -2
\end{array}\right] \quad \mathbf{e}^{(0)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

1. Find eigen-values and eigen vectors of A. (3 marks)
2. Comment upon the asymptotic behavior of the solution $\mathbf{e}^{(k)}$ for large k (i.e. $k \rightarrow \infty$). (3 marks)
