Advanced Numerical Analysis for Chemical Engineering Final Examination -1 (3 hrs.)

1. Consider matrix

$$
M=\left[\begin{array}{lll}
1 & 2 & 5 \\
-2 & -1 & -4 \\
-1 & -2 & -5 \\
0 & 1 & 2 \\
2 & 0 & 2
\end{array}\right]
$$

(a) Find a basis for column space and for null space of M.
(b) Project vector $\mathbf{b}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ onto the column space of matrix M. Also, find component of \mathbf{b} in left null space of M. (5 marks)
(c) Does the set of functions of the form

$$
f(t)=a+b t
$$

,where a and b are nonzero real constants, constitute a linear vector space? Here set of scalars is real line and $t \in[0,1]$. (3 marks)
(d) Consider application of finite difference method to solving ODE-BVP with nonequidistant grid point i.e.

$$
\Delta z_{i}=z_{i+1}-z_{i} ; i=0,1,2, \ldots
$$

Derive expressions for approximating the second derivatives (3 marks)

$$
y_{i}^{(2)}=\frac{2}{\Delta z_{i}+\Delta z_{i-1}}\left[\frac{y_{i+1-} y_{i}}{\Delta z_{i}}-\frac{y_{i-} y_{i-1}}{\Delta z_{i-1}}\right]-\frac{1}{3} y_{i}^{(3)}\left(\Delta z_{i}-\Delta z_{i-1}\right)+\ldots .
$$

2. It is desired to fit the data given in the table below

r (rate)	C	T
1	0.8	4
7.5	0.8	5
0.7	0.4	4
5	0.4	5

a nonlinear reaction rate equation of the form

$$
r=K \frac{2 C}{2+C} \exp (-A / T)
$$

(Note that, to simplify numerical the calculations, scaled values of temperature variable are given in the above table).
(a) Rearranging the model as

$$
\ln \left[\frac{r(2+C)}{2 C}\right]=\ln (K)-\frac{A}{T}
$$

determine the parameters A and K using linear least square estimation.
(b) Estimate the covariance matrix of the parameters estimated in part (a), i.e., $\widehat{\boldsymbol{\theta}}=\left[\begin{array}{ll}\ln (K) & A\end{array}\right] . \quad$ (4 marks)
(c) Suppose, instead of using linearizing transformation given above, it is desired to estimate model parameters using Gauss-Newton method. Perform one iteration of Gauss-Newton starting of the estimate of A and K generated in part (a). marks)
3. It is desired to apply the method of finite difference to solve the following PDE

$$
\frac{\partial C}{\partial t}=\frac{\partial^{2} C}{\partial t^{2}}
$$

$$
\begin{aligned}
& \text { Boundary Conditions }: C(0, t)=C(1, t)=0 \\
& \text { Initial Condition }: \\
& \hline
\end{aligned}
$$

where t and z represent dimensionless time and dimensionless length, respectively. Assuming 'n' equidistant grid points and defining vector

$$
\mathbf{x}=\left[\begin{array}{llll}
C_{1} & C_{2} & \ldots & C_{n}
\end{array}\right]^{T}
$$

we obtain the following set of ODE-IVP from the PDE

$$
\begin{aligned}
& d \mathbf{x} / d t=A \mathbf{x} ; \mathbf{x}(0)=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]^{T} \\
& A=\frac{1}{(\Delta z)^{2}}\left[\begin{array}{lllll}
-2 & 1 & 0 & \ldots & 0 \\
1 & -2 & 1 & \ldots & 0 \\
\ldots . & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & -2 & 1 \\
0 & \ldots & 0 & 1 & -2
\end{array}\right]
\end{aligned}
$$

(a) Suppose that it is desired to solve the resulting linear algebraic equations analytically as $\mathbf{x}(t)=\left[\Psi \exp (\Lambda t) \Psi^{-1}\right] \mathbf{x}(0)$ where $A=\Psi \Lambda \Psi^{-1}$. Show that vector

$$
\mathbf{v}^{(k)}=\left[\begin{array}{llll}
\sin (k \pi \Delta z) & \sin (2 k \pi \Delta z) & \ldots . . & \sin (n k \pi \Delta z)
\end{array}\right]^{T}
$$

is an eigenvector of matrix A with eigenvalue

$$
\lambda_{k}=\frac{2}{(\Delta z)^{2}}[\cos (k \pi \Delta z)-1]
$$

where and $k=1,2, \ldots n$ and $\Delta z=1 /(n+1)$. (Show calculations for $1^{s t}, i^{\text {th }}$ and the last row). (5 marks).
(b) Comment upon the asymptotic behavior of the resulting solution as $t \rightarrow \infty$. (Justify your comments). (4 marks).
(c) Suppose, instead of solving the problem analytically, the set of ODE-IVP is to be integrated using Crank-Nicholson method (i.e. trapezoidal rule). Find the condition on the integration step size ' h ' in terms of eigenvalues of matrix A so that the approximation error will decay exponentially and approximate solution will approach the true solution. (5 marks).
Note: Crank-Nicholson algorithm for the scalar case can be stated as

$$
x(n+1)=x(n)+\frac{h}{2}[f(n)+f(n+1)]
$$

(d) It is desired to derive 3'rd order Gear's implicit integration formula of the form

$$
x(n+1)=\alpha_{0} x(n)+\alpha_{1} x(n-1)+\alpha_{2} x(n-2)+h \beta_{-1} f(n+1)
$$

for numerically integrating an ODE-IVP of the form

$$
\begin{equation*}
d x / d t=f(x, t) \quad ; \quad I . c .: x\left(t_{n}\right)=x(n) \tag{1}
\end{equation*}
$$

from $t=t_{n}$ to $t=t_{n}+1$. Setup the necessary constraint equations and obtain coefficients $\left\{\alpha_{i}\right\}$ and β_{-1}. (4 marks)
Note: The exactness constraints are given as

$$
\begin{aligned}
\sum_{i=0}^{p} \alpha_{i} & =1 ; \quad(j=0) \\
\sum_{i=0}^{p}(-i)^{j} \alpha_{i}+j \sum_{i=-1}^{p}(-i)^{j-1} \beta_{i} & =1 ; \quad(j=1,2, \ldots \ldots, m)
\end{aligned}
$$

(e) A chemical reactor is modelled using the following set of ODE-IVP

$$
\begin{align*}
\frac{d C}{d t} & =\frac{1-C}{V}-2 C^{2} \tag{2}\\
\frac{d V}{d t} & =1-V \tag{3}
\end{align*}
$$

Linearize the above equations in the neighborhood of steady state $C=0.5$ and $V=1$ and develop a linear perturbation model. Obtain the analytical solution for the linearized system starting from initial condition $C=0.7$ and $V=0.8$. Also, compute stiffness ratio and comment upon asymptotic stability of the solution. (4 marks)

