Advanced Numerical Analysis for Chemical Engineering Final Examination -2 (3 hrs.)

Q1.(a) Given the measurements $b_{1}, \ldots \ldots ., b_{n}$ at distant points $t_{1}, \ldots \ldots . ., t_{n}$. Show that the straight line

$$
b=C+D t+e
$$

which minimizes $\sum e^{2}$ comes from the least squares:

$$
\left[\begin{array}{ll}
n & \sum_{i} t_{i} \\
\sum t_{i} & \left(\sum t_{i}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
\sum b \\
\sum b_{i} t_{i}
\end{array}\right]
$$

(3 marks)
(b) Find the best staright line fit to the following measurements marks)

$$
\begin{aligned}
& y=2 \text { at } t=-1 ; y=0 \text { at } t=0 \\
& y=-3 \text { at } t=-1 ; y=-5 \text { at } t=2
\end{aligned}
$$

(c) Find a vector x orthogonal to row space, and a vector y orthogonal to column space, of (2 marks)

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 3 \\
3 & 6 & 4
\end{array}\right]
$$

(d) It is desired to minimize the following objective function

$$
\Phi(\mathbf{x})=f(x)=x_{1}-x_{2}+2\left(x_{1}\right)^{2}+2 x_{1} x_{2}+\left(x_{2}\right)^{2}
$$

(i) analytically and (ii) using Newton's method starting from $x^{(0)}=[00]^{T}$. Perform one iteration by Newton's method assuming step length parameter $\lambda=1$ (Do not perform one dimensional optimization). How close is $\left[x_{1}^{(1)} x_{2}^{(1)}\right]$ generated by Newton's method to the stationary point of $\Phi(\mathbf{x})$? Is the stationary point of $\Phi(\mathbf{x})$ a maximum or a minimum?
marks)
Q2. (a) For a general 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

which iterative scheme, Jacobi or Gauss -Seidel, will cobverge faster? marks)
(b) It is desired to apply the method of finite difference to solve the following PDE

$$
\frac{\partial C}{\partial t}=\frac{\partial^{2} C}{\partial z^{2}}
$$

$$
\begin{aligned}
& \text { Boundary Conditions }: C(0, t)=C(1, t)=0 \\
& \text { Initial Condition }: \\
& C(z, 0)=1
\end{aligned}
$$

where t and z represent dimensionless time and dimensionless length, respectively.
(i)Assuming ' n ' equidistant grid points, obtain a set of ODE-IVP from the PDE and arrange these equations in a standard form $d \mathbf{x} / d t=A \mathbf{x}$. marks)
(ii) Suppose the resulting set of ODE-IVP is to be integrated using implicit Euler method. Find the condition on the integration step size ' h ' in terms of eigenvalues of matrix A so that the approximation error will decay exponentially and approximate solution will approach the true solution. The eigenvalues of matrix A are given by

$$
\lambda_{i}=-4 \sin ^{2}\left[\frac{\pi i}{2(n+1)}\right] ; \quad i=1,2, \ldots n
$$

(4 marks)
Q3. (a) Consider the following system

$$
\begin{aligned}
d y_{1} / d t & =-y_{1} \\
d y_{2} / d t & =y_{1}-2 y_{2} \\
d y_{3} / d t & =-y_{1}+y_{2}-3 y_{3} \\
y_{1}(0) & =2 ; \quad y_{2}(0)=1 ; \quad y_{3}(0)=2
\end{aligned}
$$

(a) Compute the analytical solution to ODE-IVP using eigenvalue and eigenvector based method. and calculate the stiffness ratiofor the system. marks)
(b) It is desired to solve the following scalar ODE-IVP

$$
\frac{d x}{d t}=f(x, t) ; \quad x(0)=x_{0}
$$

using a multi-step algorithm of the form $t=0$

$$
x(n+1)=\sum_{i=0}^{p} \alpha_{i} x(n-i)+h \sum_{i=-1}^{p} \beta_{i} f(n-i)
$$

where $x(n-i)=x\left(t_{n-i}\right) ; \quad f(n-i)=f\left(x\left(t_{n-i}\right), t_{n-i}\right)$ and h is the integration step size. The Adam's Moulton implicit formulae for solving the ODE-IVP is obtained by imposing the following additional constraints along with the exactness constraints for order 'm' algorithm

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots . \alpha_{p}=0 \quad \text { and } \quad \alpha_{0} \neq 0
$$

Show that, in order to solve for $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ exactly in this case, p should be selected as $p=m-2$. also, obtain the coefficients for 3 'rd order Adam's Moulton's implicit algorithm (i.e. $m=3, p=1$). (6 marks)

Q4. (a) Very common model for a dimensionless first-order chemical reaction is

$$
d C / d t=-k C
$$

The integrated form of this model is $C=C(0) \exp (-k t)$, which is non linear in the parameter k and initial concentration $C(0)$. .

t	0.2	0.5	1	1.5	2
C	0.75	0.55	0.21	0.13	0.04

We do not have a measurement of the initial concentration at $t=0$ and it is desired to estimate both $C(0)$ and k using the data given above. First transform the original model to a linear in parameter form and estimate the model parameters.
(5 marks)
(b) Perform one iteration by Gauss-Newton method starting from solution of part (a) as initial guess. (5 marks)

