Advanced Numerical Analysis for Chemical Engineering Quiz -1 (1 hrs.)

1. Which of the following subsets of R^{3} constitute a sub-space of R^{3} ? Justify your answer in each case. (4 points)
(a) All \mathbf{x} such that $x_{1}=x_{2}$ and $x_{3}=0$
(b) All \mathbf{x} such that $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$
2. Consider space $X \equiv C$ (i.e. the set of complex numbers) with scalar field $F=C$. Show that $\left\langle z_{1}, z_{2}\right\rangle=\bar{z}_{1} z_{2}$ defines an inner product on C. (4 points)
3. Consider $X=R^{2}$ with $\langle\mathbf{x}, \mathbf{y}\rangle_{W}=\mathbf{x}^{T} W \mathbf{y}$

$$
W=\left[\begin{array}{ll}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

Given a set of two linearly independent vectors in R^{2}

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; \mathbf{x}^{(2)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

it is desired to construct and orthonormal set. Applying Gram Schmidt procedure, find a set of orthonormal vectors $\left\{\mathbf{e}^{(1)}, \mathbf{e}^{(2)}\right\}$ starting from $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right\}$. (3 points)
4. Show that in R^{n} the 2 -norm (Euclidean norm) and the 1 -norm are equivalent i.e. (4 points)

$$
\sqrt{n}\|\mathbf{x}\|_{1} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}
$$

Additional Information:

Definition 1 (Subspace): A non-empty subset M of a vector space X is called subspace of X if every vector $\alpha \mathbf{x}+\beta \mathbf{y}$ is in M wherever \mathbf{x} and \mathbf{y} are both in M.

Definition 2 (Inner Product Space): An inner product space is a linear vector space X together with an inner product defined on $X \times X$. Corresponding to each pair of vectors $\mathbf{x}, \mathbf{y} \in X$ the inner product $\langle\mathbf{x}, \mathbf{y}\rangle$ of \mathbf{x} and \mathbf{y} is a scalar. The inner product satisfies following axioms.

1. $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$ (complex conjugate)
2. $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
3. $\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\bar{\lambda}\langle\mathbf{x}, \mathbf{y}\rangle$ and $\langle\mathbf{x}, \lambda \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$
4. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ and $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $\mathbf{x}=\overline{0}$.
