Advanced Numerical Analysis for Chemical Engineering Quiz -1 (1 hrs.)

- 1. Which of the following subsets of R^3 constitute a sub-space of R^3 ? Justify your answer in each case. (4 points)
 - (a) All **x** such that $x_1 = x_2$ and $x_3 = 0$
 - (b) All **x** such that $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
- 2. Consider space $X \equiv C$ (i.e. the set of complex numbers) with scalar field F = C. Show that $\langle z_1, z_2 \rangle = \overline{z}_1 z_2$ defines an inner product on C. (4 points)
- 3. Consider $X = R^2$ with $\langle \mathbf{x}, \mathbf{y} \rangle_W = \mathbf{x}^T W \mathbf{y}$ $\begin{bmatrix} 2 \end{bmatrix}$

$$W = \left[\begin{array}{rrr} 2 & -1 \\ -1 & 2 \end{array} \right]$$

Given a set of two linearly independent vectors in \mathbb{R}^2

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1\\2 \end{bmatrix}; \ \mathbf{x}^{(2)} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

it is desired to construct and orthonormal set. Applying Gram Schmidt procedure, find a set of orthonormal vectors $\{\mathbf{e}^{(1)}, \mathbf{e}^{(2)}\}$ starting from $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}$. (3 points)

4. Show that in \mathbb{R}^n the 2-norm (Euclidean norm) and the 1-norm are equivalent i.e. (4 points)

$$\sqrt{n} \|\mathbf{x}\|_1 \le \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1$$

Additional Information:

Definition 1 (Subspace): A non-empty subset M of a vector space X is called subspace of X if every vector $\alpha \mathbf{x} + \beta \mathbf{y}$ is in M wherever \mathbf{x} and \mathbf{y} are both in M.

Definition 2 (Inner Product Space): An inner product space is a linear vector space X together with an inner product defined on $X \times X$. Corresponding to each pair of vectors $\mathbf{x}, \mathbf{y} \in X$ the inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ of \mathbf{x} and \mathbf{y} is a scalar. The inner product satisfies following axioms.

1. $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ (complex conjugate)

2.
$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$$

- 3. $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \overline{\lambda} \langle \mathbf{x}, \mathbf{y} \rangle$ and $\langle \mathbf{x}, \lambda \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$
- 4. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \overline{0}$.