Module 1 : Real Numbers, Functions and Sequences
Lecture 3 : Monotone Sequence and Limit theorem [ Section 3.2 : Limit Theorems on Sequences ]
 
     Hence,                                     .
   Using binomial theorem, we get   .
   Thus,     .
   Hence, by the Sandwich Theorem,  as  .
(ii) For x > 0, the sequence is convergent and . To see this, let us first suppose that





 

x > 1.Then, for every  . Let
Once again, for every .
                             .
Hence, and by Sandwitch theorem, , i.e.,  Next, suppose
Then    for every n.  Let
                             .  
Once again, for every 
                            .

7