Module 3 : Stability analysis of discrete time systems

Lecture 1 : Stability Analysis of closed loop system in z-plane

Since $ H(s)=1$, $ G(z)=GH(z)$ and $ \dfrac{C(z)}{R(z)}=\dfrac{G(z)}{1+G(z)}$
$ G(z)$ can be simplified as

% latex2html id marker 657
$\displaystyle \therefore \frac {C(z)}{R(z)}$
  $\displaystyle =$ $\displaystyle \frac{z-1}{z}.\left[\frac{z}{(z-1)^{2}}-\frac{(1-e^{-1})z}{(z-1)(z-e^{-1})}\right]$  
    $\displaystyle =$ $\displaystyle \frac {(z-e^{-1})-(1-e^{-1})(z-1)}{(z-1)(z-e^{-1})}$  
    $\displaystyle =$ $\displaystyle \frac{z-0.368-0.632z+0.632}{(z-1)(z-0.368)}$  
  $\displaystyle =$ $\displaystyle \frac{0.368z+0.264}{(z-1)(z-0.368)}$  

We know that the characteristics equation is $ \Rightarrow 1+G(z)=0$

  $\displaystyle \Rightarrow$ $\displaystyle (z-1)(z-0.368)+ 0.368z+0.264=0$  
  $\displaystyle \Rightarrow$ $\displaystyle z^{2}-z+0.632=0$  
  $\displaystyle \Rightarrow$ $\displaystyle z_{1}=0.5+0.618j$  
  $\displaystyle \Rightarrow$ $\displaystyle z_{2}=0.5-0.618j$  

Since $ \vert z_{1}\vert=\vert z_{2}\vert$     <1, the system is stable.

Three stability tests can be applied directly to the characteristic equation without solving for the roots.
Schur-Cohn stability test
Jury Stability test
Routh stability coupled with bi-linear transformation.

Other stability tests like Lyapunov stability analysis are applicable for state space system models which will be discussed later. Computation requirements in Jury test is simpler than Schur-Cohn when the co-efficients are real which is always true for physical systems.