Application to Differential Equations

Consider the following example.

EXAMPLE 10.5.1   Solve the following Initial Value Problem:

$\displaystyle a f^{\prime\prime}(t) + b f^\prime(t) +c f(t)= g(t) \; {\mbox{ with }}\;
f(0) = f_0, \; f^\prime(0) = f_1.$


Solution: Let $ {\mathcal L}(g(t)) =
G(s).$ Then

$\displaystyle G(s) = a(s^2 F(s) - s f(0) - f^\prime(0)) + b ( s F(s) - f(0) ) +c F(s)$

and the initial conditions imply

$\displaystyle G(s) = (a s^2 + b s +c) F(s) - (a s + b) f_0 - a f_1.$

Hence,

$\displaystyle F(s) = \underbrace{\frac{G(s)}{a s^2 + b s + c}}_{ non-homogeneo...
... a s^2 + b s + c} + \frac{a f_1}{a s^2 + b s + c}}_{initial \;\; conditions}.$ (10.5.1)

Now, if we know that $ G(s)$ is a rational function of $ s$ then we can compute $ f(t)$ from $ F(s)$ by using the method of PARTIAL FRACTIONS (see Subsection 10.3.1).

EXAMPLE 10.5.2  
  1. Solve the IVP

    $\displaystyle y^{\prime\prime} - 4 y^\prime - 5 y = f(t) =
\left\{\begin{array...
...} \;\; 0 \leq t < 5 \\
t+5 & {\mbox{ if }} \;\; t \geq 5 \end{array}. \right.$

    with $ y(0) = 1$ and $ y^\prime(0) = 4.$
    Solution: Note that $ f(t) = t + U_5(t)$ . Thus,

    $\displaystyle {\mathcal L}(f(t)) = \frac{1}{s^2} + \frac{e^{-5s}}{s}.$

    Taking Laplace transform of the above equation, we get

    $\displaystyle \bigl(s^2 Y(s) - s y(0) - y^\prime(0)\bigr) - 4 \left(s Y(s) -
y(0)\right) - 5 Y(s) = {\mathcal L}(f(t)) =
\frac{1}{s^2} + \frac{e^{-5s}}{s}.$

    Which gives
    $\displaystyle Y(s)$ $\displaystyle =$ $\displaystyle \frac{s}{(s+1)(s-5)} +
\frac{e^{-5s}}{s(s+1)(s-5)} + \frac{1}{s^2(s+1)(s-5)}$  
      $\displaystyle =$ $\displaystyle \frac{1}{6} \left[ \frac{5}{s-5} + \frac{1}{s+1} \right] + \frac{e^{-5s}}{30} \left[ -\frac{6}{s} +
\frac{5}{s+1} + \frac{1}{s-5} \right]$  
        $\displaystyle + \frac{1}{150} \left[ -\frac{30}{s^2} + \frac{24}{s} -
\frac{25}{s+1} + \frac{1}{s-5} \right].$  

    Hence,
    $\displaystyle y(t)$ $\displaystyle =$ $\displaystyle \frac{5 e^{5t}}{6} +
\frac{e^{-t}}{6} + U_5(t)
\left[ -\frac{1}{5} + \frac{e^{-(t-5)}}{6} + \frac{e^{5(t-5)}}{30} \right]$  
        $\displaystyle + \frac{1}{150}
\left[ - 30 t + 24 - 25 e^{-t} + e^{5t} \right].$  

Remark 10.5.3   Even though $ f(t)$ is a DISCONTINUOUS function at $ t = 5,$ the solution $ y(t)$ and $ y^\prime(t)$ are continuous functions of $ t$ , as $ y^{\prime\prime}$ exists. In general, the following is always true:
Let $ y(t)$ be a solution of $ a y^{\prime\prime} + b y^\prime + c y = f(t).$ Then both $ y(t)$ and $ y^\prime(t)$ are continuous functions of time.

EXAMPLE 10.5.4  
  1. Consider the IVP $ t y^{\prime\prime}(t) + y^\prime(t) + t y(t) = 0,$ with $ y(0) = 1$ and $ y^\prime(0) = 0.$ Find $ {\mathcal L}(y(t)).$
    Solution: Applying Laplace transform, we have

    $\displaystyle - \frac{d}{ds}\left[ s^2 Y(s) - s y(0) - y^\prime (0) \right] +
(s Y(s) - y(0)) - \frac{d}{ds} Y(s) = 0.$

    Using initial conditions, the above equation reduces to

    $\displaystyle \frac{d}{ds} \left[ (s^2 +1) Y(s) - s \right] - s Y(s) + 1 = 0.$

    This equation after simplification can be rewritten as

    $\displaystyle \frac{Y^\prime(s)}{Y(s)} = - \frac{s}{s^2 +
1}.$

    Therefore, $ \displaystyle Y(s) = a
(1+s^2)^{-\frac{1}{2}}.$ From Example 10.4.2.1, we see that $ a = 1$ and hence

    $\displaystyle \displaystyle Y(s) = (1+s^2)^{-\frac{1}{2}}.$

  2. Show that $ y(t) = \displaystyle \int_0^t f(\tau) g(t -\tau)
d \tau$ is a solution of

    $\displaystyle y^{\prime\prime}(t) + a y^\prime(t) + b y(t) = f(t), \;\;\;
{\mbox{ with }} \;\; y(0) = y^\prime(0) = 0;$

    where $ {\mathcal
L}[g(t)] = \displaystyle\frac{1}{s^2 + a s + b}.$
    Solution: Here, $ Y(s) = \displaystyle\frac{F(s)}{s^2 + a s + b} =
F(s)\cdot \frac{1}{s^2 + as + b}.$ Hence,

    $\displaystyle y(t) = \displaystyle (f
\star g)(t) = \displaystyle\int_0^t f(\tau) g(t -\tau) d \tau.$

  3. Show that $ y(t) = \displaystyle\frac{1}{a}
\int_0^t f(\tau) \sin (a(t -\tau)) d \tau$ is a solution of

    $\displaystyle y^{\prime\prime}(t) + a^2 y(t) = f(t), \;\;\; {\mbox{ with }}
\;\; y(0) = y^\prime(0) = 0.$


    Solution: Here, $ Y(s) =
\displaystyle\frac{F(s)}{s^2 + a^2} = \frac{1}{a} \left( F(s)\cdot
\frac{a}{s^2 + a^2}\right).$ Hence,

    $\displaystyle y(t) =
\displaystyle\frac{1}{a} f(t) \star \sin (at) =
\displaystyle\frac{1}{a} \int_0^t f(\tau) \sin (a(t -\tau)) d
\tau.$

  4. Solve the following IVP.

    $\displaystyle y^\prime(t) = \int_0^t y(\tau)
d \tau + t - 4 \sin t, \;\; {\mbox{ with }} \;\; y(0) = 1.$


    Solution: Taking Laplace transform of both sides and using Theorem 10.3.5, we get

    $\displaystyle s Y(s) - 1 =
\frac{Y(s)}{s} + \frac{1}{s^2} - 4 \frac{1}{s^2 + 1}.$

    Solving for $ Y(s),$ we get

    $\displaystyle Y(s) = \frac{s^2 -1}{s(s^2 + 1)} = \frac{1}{s} - 2\frac{1}{s^2
+ 1}.$

    So,

    $\displaystyle y(t) = 1 - 2 \int_0^t \sin (\tau) d \tau = 1 + 2
(\cos t -1) = 2 \cos t - 1.$

A K Lal 2007-09-12