Transform of the Unit-Impulse Function

Consider the following example.

EXAMPLE 10.6.1   Find the Laplace transform, $ D_h(s)$ , of

$\displaystyle \delta_h(t) =
\left\{\begin{array}{ll} 0 & t < 0 \\ \frac{1}{h} & 0 \leq t < h
\\ 0 & t > h.
\end{array}\right.$


Solution: Note that $ \delta_h(t) = \displaystyle\frac{1}{h}\bigl(
U_0(t) - U_h(t) \bigr).$ By linearity of the Laplace transform, we get

$\displaystyle D_h(s) = \frac{1}{h} \bigl( \frac{ 1 - e^{-hs} }{s}
\bigr).$

Remark 10.6.2  
  1. Observe that in Example 10.6.1, if we allow $ h$ to approach 0 , we obtain a new function, say $ \delta(t).$ That is, let

    $\displaystyle \delta(t) = \lim_{h \longrightarrow 0} \delta_h(t).$

    This new function is zero everywhere except at the origin. At origin, this function tends to infinity. In other words, the graph of the function appears as a line of infinite height at the origin. This new function, $ \delta(t)$ , is called the UNIT-IMPULSE FUNCTION (or Dirac's delta function).

  2. We can also write

    $\displaystyle \delta(t) = \lim_{h \longrightarrow 0}
\delta_h(t) = \lim_{h \longrightarrow 0} \frac{1}{h}\bigl( U_0(t)
- U_h(t) \bigr).$

  3. In the strict mathematical sense $ \lim\limits_{h
\longrightarrow 0} \delta_h(t)$ does not exist. Hence, mathematically speaking, $ \delta(t)$ does not represent a function.

  4. However, note that

    $\displaystyle \int_0^\infty \delta_h(t) d t = 1, \;\; {\mbox{ for all }} \; \;
h.$

  5. Also, observe that $ {\mathcal L}(\delta_h(t)) =
\displaystyle \frac{ 1 - e^{- h s}}{hs}.$ Now, if we take the limit of both sides, as $ h$ approaches zero (apply L'Hospital's rule), we get

    $\displaystyle {\mathcal L}(\delta(t)) = \lim_{h \longrightarrow 0} \frac{ 1 - e^{- h
s}}{hs}= \lim_{h \longrightarrow 0} \frac{ s e^{- h s}}{s} = 1.$

A K Lal 2007-09-12