Properties of Laplace Transform

LEMMA 10.3.1 (Linearity of Laplace Transform)  
  1. Let $ a, b \in {\mathbb{R}}$ . Then
    $\displaystyle {\mathcal L}\bigl(a f(t) + b g(t)\bigr)$ $\displaystyle =$ $\displaystyle \int_0^\infty \bigl(a f(t) + b g(t)\bigr) e^{-s t} dt$  
      $\displaystyle =$ $\displaystyle a {\mathcal L}(f(t)) + b {\mathcal L}(g(t)).$  

  2. If $ F(s) = {\mathcal L}(f(t)), \; $ and $ G(s) = {\mathcal L}(g(t))$ , then

    $\displaystyle {\mathcal L}^{-1} \bigl( a F(s) + b G(s) \bigr) = a f(t) + b g(t).$

The above lemma is immediate from the definition of Laplace transform and the linearity of the definite integral.

EXAMPLE 10.3.2  
  1. Find the Laplace transform of $ \cosh (at).$
    Solution: $ \cosh (at) =
\displaystyle\frac{e^{at} + e^{-at}}{2}.$ Thus

    $\displaystyle {\mathcal
L}(\cosh(at) ) = \displaystyle\frac{1}{2} \left( \frac...
... +
\frac{1}{s+a} \right) = \frac{s}{s^2 - a^2}, \hspace{1in} s > \vert a\vert.$

  2. Similarly,

    $\displaystyle {\mathcal L}(\sinh(at) ) = \displaystyle\frac{1}{2} \left(
\frac...
... - \frac{1}{s+a} \right) = \frac{a}{s^2 - a^2},
\hspace{1in} s > \vert a\vert.$

  3. Find the inverse Laplace transform of $ \displaystyle\frac{1}{s(s+1)}$ .
    Solution:
    $\displaystyle {\mathcal L}^{-1} \bigl(\frac{1}{s(s+1)}\bigr)$ $\displaystyle =$ $\displaystyle {\mathcal L}^{-1} \bigl(\frac{1}{s} - \frac{1}{s+1}\bigr)$  
      $\displaystyle =$ $\displaystyle {\mathcal L}^{-1} \bigl(\frac{1}{s}\bigr) -
{\mathcal L}^{-1}\bigl(\frac{1}{s+1}\bigr) = 1 - e^{-t}.$  

    Thus, the inverse Laplace transform of $ \displaystyle\frac{1}{s(s+1)}$ is $ f(t) = 1 - e^{-t}.$

THEOREM 10.3.3 (Scaling by $ a$ )   Let $ f(t)$ be a piecewise continuous function with Laplace transform $ F(s).$ Then for $ \; a > 0,\;\; {\mathcal L}(f(at)) =
\displaystyle\frac{1}{a} F(\frac{s}{a}).$

Proof. By definition and the substitution $ z= at,$ we get
$\displaystyle {\mathcal L}(f(at))$ $\displaystyle =$ $\displaystyle \int_0^\infty e^{-st} f(at) d t
=\frac{1}{a} \int_0^\infty e^{-s \frac{z}{a}} f(z) dz$  
  $\displaystyle =$ $\displaystyle \frac{1}{a} \int_0^\infty e^{-\frac{s}{a} z} f(z) dz =
\frac{1}{a} F(\frac{s}{a}).$  

height6pt width 6pt depth 0pt

EXERCISE 10.3.4  
  1. Find the Laplace transform of

    $\displaystyle t^2 + a t + b, \;\; \cos (w t + \theta),
\;\; \cos^2 t, \;\; \sinh^2 t;$

    where $ a, b, w$ and $ \theta$ are arbitrary constants.

    Figure 10.2: $ f(t)$
    \includegraphics[scale=.8]{lapgraphs.eps}
  2. Find the Laplace transform of the function $ f(\cdot)$ given by the graphs in Figure 10.2.
  3. If $ {\mathcal L}(f(t)) = \displaystyle\frac{1}{s^2 + 1} +
\frac{1}{2s+1}$ , find $ f(t)$ .

The next theorem relates the Laplace transform of the function $ f^\prime(t)$ with that of $ f(t)$ .

THEOREM 10.3.5 (Laplace Transform of Differentiable Functions)   Let $ f(t),$ for $ t > 0,$ be a differentiable function with the derivative, $ f^\prime(t),$ being continuous. Suppose that there exist constants $ M$ and $ T$ such that $ \vert f(t) \vert \leq M e^{{\alpha}t}$ for all $ t \geq T.$ If $ {\mathcal L}(f(t)) = F(s)$ then

$\displaystyle {\mathcal L}\left( f^\prime(t) \right) = s F(s) - f(0) \;\; {\mbox{ for }} \;\; s > {\alpha}.$ (10.3.1)

Proof. Note that the condition $ \vert f(t) \vert \leq M e^{{\alpha}t}$ for all $ t \geq T$ implies that

$\displaystyle \lim\limits_{b \longrightarrow \infty} f(b) e^{-sb} = 0 \;\;
{\mbox{ for }} \;\; s > {\alpha}.$

So, by definition,
$\displaystyle {\mathcal L}\bigl( f^\prime(t) \bigr)$ $\displaystyle =$ $\displaystyle \int_0^\infty e^{-s t}
f^\prime(t) dt = \lim_{b \longrightarrow \infty} \int_0^b e^{-s t}
f^\prime(t) dt$  
  $\displaystyle =$ $\displaystyle \lim_{b \longrightarrow \infty} \biggl.f(t) e^{-st} \biggr\vert _0^b -
\lim_{b \longrightarrow \infty}\int_0^b f(t) (-s) e^{-st} dt$  
  $\displaystyle =$ $\displaystyle - f(0) + s F(s).$  

height6pt width 6pt depth 0pt

We can extend the above result for $ n^{\mbox{th}}$ derivative of a function $ f(t)$ , if $ f^\prime(t), \ldots, f^{(n-1)}(t), f^{(n)}(t)$ exist and $ f^{(n)}(t)$ is continuous for $ t \geq 0$ . In this case, a repeated use of Theorem 10.3.5, gives the following corollary.

COROLLARY 10.3.6   Let $ f(t)$ be a function with $ {\mathcal L}(f(t)) = F(s).$ If $ f^\prime(t), \ldots, f^{(n-1)}(t), f^{(n)}(t)$ exist and $ f^{(n)}(t)$ is continuous for $ t \geq 0,$ then

$\displaystyle {\mathcal L}\bigl( f^{(n)}(t)\bigr) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f^\prime(0) - \cdots - f^{(n-1)}(0).$ (10.3.2)

In particular, for $ n = 2$ , we have

$\displaystyle {\mathcal L}\bigl( f^{\prime\prime}(t) \bigr) = s^2 F(s) - s f(0) - f^\prime(0).$ (10.3.3)

COROLLARY 10.3.7   Let $ f^\prime(t)$ be a piecewise continuous function for $ t \geq 0$ . Also, let $ f(0) = 0$ . Then

$\displaystyle {\mathcal L}(f^\prime(t))= s F(s) \;\; {\mbox{ or
equivalently }} \;\; {\mathcal L}^{-1}(s F(s)) = f^\prime(t).$

EXAMPLE 10.3.8  
  1. Find the inverse Laplace transform of $ \displaystyle\frac{s}{s^2 + 1}.$
    Solution: We know that $ {\mathcal L}^{-1} (
\displaystyle\frac{1}{s^2 + 1} ) = \sin t.$ Then $ \sin (0) = 0$ and therefore, $ {\mathcal L}^{-1} (
\displaystyle\frac{s}{s^2 + 1} ) = \cos t.$
  2. Find the Laplace transform of $ f(t) = \cos^2 (t).$
    Solution: Note that $ f(0) = 1$ and $ f^\prime(t) = -
2 \cos t \; \sin t = - \sin (2t).$ Also,

    $\displaystyle {\mathcal L}(- \sin
(2t) ) = \frac{-2}{s^2 + 4}.$

    Now, using Theorem 10.3.5, we get

    $\displaystyle {\mathcal L}(f(t)) = \frac{1}{s} \left(- \frac{2}{s^2 + 4} + 1
\right) = \frac{s^2 + 2}{s(s^2 + 4)}.$

LEMMA 10.3.9 (Laplace Transform of $ t f(t)$ )   Let $ f(t)$ be a piecewise continuous function with $ {\mathcal L}(f(t)) = F(s).$ If the function $ F(s)$ is differentiable, then

$\displaystyle {\mathcal L}(t f(t)) = -\displaystyle\frac{d}{ds}F(s).$

$\displaystyle {\mbox{ Equivalently,}} \;\;\; {\mathcal L}^{-1}(-\frac{d}{ds}F(s)) =
t f(t).$

Proof. By definition, $ F(s) =
\displaystyle\int_0^\infty e^{-st} f(t) dt.$ The result is obtained by differentiating both sides with respect to $ s$ . height6pt width 6pt depth 0pt

Suppose we know the Laplace transform of a $ f(t)$ and we wish to find the Laplace transform of the function $ g(t) = \displaystyle\frac{f(t)}{t}.$ Suppose that $ G(s) = {\mathcal L}(g(t))$ exists. Then writing $ f(t) = t g(t)$ gives

$\displaystyle F(s) = {\mathcal L}(f(t)) = {\mathcal L}(t g(t)) = - \frac{d}{ds} G(s).$

Thus, $ G(s) = -\int\limits_a^s F(p) dp$ for some real number $ a$ . As $ \lim\limits_{s {\longrightarrow}\infty} G(s) = 0$ , we get $ G(s) = \int\limits_s^\infty F(p) dp.$

Hence,we have the following corollary.

COROLLARY 10.3.10   Let $ {\mathcal L}(f(t)) = F(s)$ and $ g(t) = \displaystyle\frac{f(t)}{t}.$ Then

$\displaystyle {\mathcal L}(g(t)) = G(s) = \int\limits_s^\infty F(p) dp.$

EXAMPLE 10.3.11  
  1. Find $ {\mathcal L} (t \sin (at)).$
    Solution: We know $ {\mathcal L} (\sin (at)) =
\displaystyle\frac{a}{s^2 + a^2}.$ Hence $ {\mathcal L} (t \sin
(at)) = \displaystyle\frac{2 a s}{(s^2 + a^2)^2}. $
  2. Find the function $ f(t)$ such that $ F(s) =
\displaystyle\frac{4}{(s-1)^3}.$
    Solution: We know $ {\mathcal L} (e^t) = \displaystyle\frac{1}{s-1}$ and
    $ \displaystyle{\frac{4}{(s-1)^3} = 2 \frac{d}{ds} \left(
- \frac{1}{(s-1)^2} \right) = 2 \frac{d^2}{ds^2} \left(
\frac{1}{s-1} \right).}$

    By lemma 10.3.9, we know that $ {\mathcal L}(t f(t)) = -
\frac{d}{ds}F(s).$ Suppose $ \frac{d}{ds} F(s) = G(s).$ Then $ g(t)
= {\mathcal L}^{-1} G(s) = {\mathcal L}^{-1} \frac{d}{ds} F(s) = -
t f(t).$ Therefore,

    $\displaystyle {\mathcal L}^{-1} \left(\frac{d^2}{ds^2} F(s) \right) =
{\mathcal L}^{-1} \left( \frac{d}{ds} G(s) \right) = - t g(t) =
t^2 f(t).$

    Thus we get $ f(t) = 2 t^2 e^t.$

LEMMA 10.3.12 (Laplace Transform of an Integral)   If $ F(s) = {\mathcal L}(f(t))$ then

$\displaystyle {\mathcal L}\left[\int_0^t f(\tau) d\tau \right] = \frac{F(s)}{s}.$

Equivalently, $ {\mathcal L}^{-1} \left(
\displaystyle\frac{F(s)}{s} \right) = \int_0^t f(\tau) d \tau.$

Proof. By definition,

$\displaystyle {\mathcal L} \bigl( \int_0^t f(\tau) \; d \tau \bigr) =
\int_0^\...
... \; d \tau \right) d
t = \int_0^\infty \int_0^t e^{-st} f(\tau) \; d \tau d t.$

We don't go into the details of the proof of the change in the order of integration. We assume that the order of the integrations can be changed and therefore

$\displaystyle \int_0^\infty \int_0^t e^{-st} f(\tau) \; d \tau d t
= \int_0^\infty \int_{\tau}^\infty e^{-st} f(\tau) \; d t \; d\tau.$

Thus,
$\displaystyle {\mathcal L} \bigl( \int_0^t f(\tau) \; d \tau \bigr)$ $\displaystyle =$ $\displaystyle \int_0^\infty \int_0^t e^{-st} f(\tau) \; d \tau d t$  
  $\displaystyle =$ $\displaystyle \int_0^\infty \int_{\tau}^\infty e^{-st} f(\tau) \; d t \; d\tau ...
...nt_0^\infty \int_{\tau}^\infty e^{-s(t-\tau) - s \tau} f(\tau)
\; d t \; d \tau$  
  $\displaystyle =$ $\displaystyle \int_0^\infty e^{-s \tau} f (\tau)d \tau
\left(\int_\tau^\infty e^{-s(t - \tau)} d t \right)\;$  
  $\displaystyle =$ $\displaystyle \int_0^\infty e^{-s \tau} f (\tau)d \tau \left(\int_0^\infty
e^{-sz} d z \right)\; = F(s) \frac{1}{s}.$  

height6pt width 6pt depth 0pt

EXAMPLE 10.3.13  
  1. Find $ {\mathcal L} (\int_0^t \sin (az) dz).$
    Solution: We know $ {\mathcal L} (\sin (at)) =
\displaystyle\frac{a}{s^2 + a^2}.$ Hence

    $\displaystyle {\mathcal L} (\int_0^t
\sin (az) dz ) = \displaystyle\frac{1}{s} \cdot \frac{a }{(s^2 +
a^2)} = \frac{a}{s(s^2+a^2)}. $

  2. Find $ {\mathcal L}\left(\displaystyle\int_0^t \tau^2 d\tau
\right).$
    Solution: By Lemma 10.3.12

    $\displaystyle {\mathcal L}\left(\int_0^t \tau^2 d\tau \right) =
\frac{ {\mathcal L}\left(t^2 \right)}{s} = \frac{1}{s} \cdot
\frac{2!}{s^3} = \frac{2}{s^4}.$

  3. Find the function $ f(t)$ such that $ F(s) =
\displaystyle\frac{4}{s(s-1)}.$
    Solution: We know $ {\mathcal L} (e^t) = \displaystyle\frac{1}{s-1}.$ So,

    $\displaystyle {\mathcal L}^{-1}\left(\frac{4}{s(s-1)} \right)= 4 {\mathcal
L}^...
...t(\frac{1}{s}\frac{1}{s-1} \right)= 4 \int_0^t e^{\tau}
d \tau = 4 ( e^t - 1).$

LEMMA 10.3.14 ($ s$ -Shifting)   Let $ {\mathcal L}(f(t)) = F(s).$ Then $ {\mathcal L}(e^{at} f(t)) =
F(s-a)$ for $ s > a.$

Proof.
$\displaystyle {\mathcal
L}(e^{at} f(t))$ $\displaystyle =$ $\displaystyle \int_0^\infty e^{at} f(t) e^{-s t} dt =
\int_0^\infty f(t) e^{-(s-a) t} dt$  
  $\displaystyle =$ $\displaystyle F(s-a) \hspace{.5in} s
> a.$  

height6pt width 6pt depth 0pt

EXAMPLE 10.3.15  
  1. Find $ {\mathcal L} (e^{at} \sin (bt)).$
    Solution: We know $ {\mathcal L} (\sin
(bt)) = \displaystyle\frac{b}{s^2 + b^2}.$ Hence $ {\mathcal L}
(e^{at} \sin (bt)) = \displaystyle\frac{b}{(s-a)^2 + b^2}. $
  2. Find $ {\mathcal L}^{-1}\left( \frac{s-5}{(s-5)^2 +
36}\right).$
    Solution: By $ s$ -Shifting, if $ {\mathcal L}(f(t)) = F(s)$ then $ {\mathcal L}(e^{at} f(t)) =
F(s-a)$ . Here, $ a = 5$ and

    $\displaystyle {\mathcal L}^{-1}
\left(\frac{s}{s^2+ 36} \right)
= {\mathcal L}^{-1} \left(\frac{s}{s^2+ 6^2}\right) = \cos (6t).$

    Hence, $ f(t) = e^{5t} \cos (6t).$



Subsections
A K Lal 2007-09-12