Examples

EXAMPLE 10.2.5  
  1. Find $ F(s) = {\mathcal L} (f(t)),$ where $ f(t) = 1, \;\;
t \geq 0.$
    Solution: $ F(s) = \displaystyle\int_0^\infty
e^{-s t} dt = \lim\limits_{b \longrightarro...
...aystyle\frac{1}{s} - \lim\limits_{b \longrightarrow \infty}
\frac{e^{-sb}}{s}.$
    Note that if $ s > 0,$ then

    $\displaystyle \lim\limits_{b \longrightarrow \infty} \frac{e^{-sb}}{s} =0.$

    Thus,

    $\displaystyle F(s) = \frac{1}{s}, \;\; {\mbox{ for }} \;\; s > 0.$




    In the remaining part of this chapter, whenever the improper integral is calculated, we will not explicitly write the limiting process. However, the students are advised to provide the details.

  2. Find the Laplace transform $ F(s)$ of $ f(t),$ where $ f(t) = t,
\;\; t \geq 0.$
    Solution: Integration by parts gives
    $\displaystyle F(s)$ $\displaystyle =$ $\displaystyle \int_0^\infty t e^{-s t} dt = \biggl. \frac{- t
e^{-s t}}{s} \biggr\vert _0^\infty + \int_0^\infty \frac{ e^{-s t}}{s}
dt$  
      $\displaystyle =$ $\displaystyle \frac{1}{s^2}\;\; {\mbox{ for }} \;\; s > 0.$  

  3. Find the Laplace transform of $ f(t) = t^n, \;\; n$ a positive integer.
    Solution: Substituting $ s t = \tau,$ we get
    $\displaystyle F(s)$ $\displaystyle =$ $\displaystyle \int_0^\infty e^{- st} t^n dt$  
      $\displaystyle =$ $\displaystyle \frac{1}{s^{n+1}} \int_0^\infty e^{-\tau} \tau^n \; d \tau$  
      $\displaystyle =$ $\displaystyle \frac{n!}{s^{n+1}}\;\; {\mbox{ for }} \;\; s > 0.$  

  4. Find the Laplace transform of $ f(t) = e^{at}, \; t \geq 0.$
    Solution: We have
    $\displaystyle {\mathcal L} (e^{at})$ $\displaystyle =$ $\displaystyle \displaystyle \int_0^\infty e^{at} e^{-s
t} dt = \int_0^\infty e^{-(s-a) t} dt$  
      $\displaystyle =$ $\displaystyle \frac{1}{s-a}
\;\; {\mbox{ for }} \;\; s > a.$  

  5. Compute the Laplace transform of $ \cos (a t), \; \; t \geq 0.$
    Solution:
    $\displaystyle {\mathcal L}(\cos(at))$ $\displaystyle =$ $\displaystyle \int_0^\infty \cos(at) e^{-st} dt$  
      $\displaystyle =$ $\displaystyle \biggl.
\cos(at) \frac{e^{-s t}}{-s} \biggr\vert _0^\infty - \int_0^\infty -
a \sin(at) \cdot \frac{e^{-s t}}{-s} dt$  
      $\displaystyle =$ $\displaystyle \frac{1}{s} -
\biggl( \biggl. \frac{a \sin(at)}{s} \frac{e^{-s t}...
..._0^\infty - \int_0^\infty a^2 \frac{\cos(at)}{s}
\frac{e^{-s t}}{-s} dt \biggr)$  

    Note that the limits exist only when $ s > 0.$ Hence,

    $\displaystyle \displaystyle \frac{a^2 + s^2}{s^2} \int_0^\infty \cos(at) e^{-st...
...hus }} \;\; {\mathcal L}(\cos(at))
= \frac{s}{a^2 + s^2}; \hspace{.5in} s > 0.$

  6. Similarly, one can show that

    $\displaystyle {\mathcal L}(\sin (at)) = \frac{a}{s^2 + a^2}, \;\; s > 0.$

  7. Find the Laplace transform of $ f(t) = \displaystyle\frac{1}{\sqrt{t}},
\;\; t > 0.$
    Solution: Note that $ f(t)$ is not a bounded function near $ t=0$ (why!). We will still show that the Laplace transform of $ f(t)$ exists.
    $\displaystyle {\mathcal L}(\frac{1}{\sqrt{t}})$ $\displaystyle =$ $\displaystyle \int_0^\infty \frac{1}{\sqrt{t}}
e^{-st} dt = \int_0^\infty \frac...
...{\sqrt{\tau}}
e^{-\tau} \frac{d\tau}{s} \;\; ({\mbox{ substitute }} \tau = s t)$  
      $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{s}} \int_0^\infty \tau^{-\frac{1}{2}} e^{-\tau} d \tau
= \frac{1}{\sqrt{s}} \int_0^\infty \tau^{\frac{1}{2}-1} e^{-\tau} d \tau.$  

    Recall that for calculating the integral $ \displaystyle \int_0^\infty \tau^{\frac{1}{2}-1}
e^{-\tau} d \tau, $ one needs to consider the double integral

    $\displaystyle \int_0^\infty \int_0^\infty e^{-(x^2+ y^2)} dx dy = \left(
\int_...
...eft( \frac{1}{2}
\int_0^\infty \tau^{\frac{1}{2}-1}e^{-\tau} d \tau \right)^2.$

    It turns out that

    $\displaystyle \displaystyle \int_0^\infty \tau^{\frac{1}{2}-1}
e^{-\tau} d \tau = \sqrt{\pi}.$

    Thus, $ \displaystyle{\mathcal L}(\frac{1}{\sqrt{t}}) =
\frac{\sqrt{\pi}}{\sqrt{s}}$ for $ s > 0.$

We now put the above discussed examples in tabular form as they constantly appear in applications of Laplace transform to differential equations.

Table 10.1: Laplace transform of some Elementary Functions
$ f(t)$ $ {\mathcal L}(f(t))$ $ f(t)$ $ {\mathcal L}(f(t))$
       
1 $ \displaystyle \frac{1}{s},\;\; s> 0$ $ t$ $ \displaystyle\frac{1}{s^2},\;\; s> 0$
       
$ t^n$ $ \displaystyle \frac{n!}{s^{n+1}},\;\; s> 0$ $ e^{at} $ $ \displaystyle \frac{1}{s-a},\;\; s> a$
       
$ \sin(at)$ $ \displaystyle\frac{a}{s^2 + a^2},\;\; s> 0$ $ \cos(at)$ $ \displaystyle\frac{s}{s^2 + a^2},\;\; s> 0$
       
$ \sinh(at)$ $ \displaystyle \frac{a}{s^2 - a^2},\;\; s> a$ $ \cosh(at)$ $ \displaystyle\frac{s}{s^2 - a^2},\;\; s> a$


A K Lal 2007-09-12