Transform of Unit Step Function

DEFINITION 10.3.17 (Unit Step Function)   The Unit-Step function is defined by

$\displaystyle U_a(t) = \left\{\begin{array}{ll} 0 & {\mbox { if }} \;\; 0
\leq t < a \\ 1 & {\mbox{ if }} \;\; t \geq a \end{array}.
\right.$

EXAMPLE 10.3.18   $ {\mathcal L}\bigl(U_a(t)\bigr) = \displaystyle
\int\limits_a^\infty e^{-st} dt = \displaystyle\frac{e^{-sa}}{s},
\; s > 0.$

Figure 10.3: Graphs of $ f(t)$ and $ U_a(t) f(t-a)$
\includegraphics[scale=0.8]{tshift.eps}

LEMMA 10.3.19 ($ t$ -Shifting)   Let $ {\mathcal L}(f(t)) = F(s).$ Define $ g(t)$ by

$\displaystyle g(t) = \left\{\begin{array}{ll} 0 & {\mbox { if }} \;\; 0 \leq t < a \\
f(t-a) & {\mbox{ if }} \;\; t \geq a \end{array}. \right.$

Then $ g(t) = U_a(t) f(t-a)$ and

$\displaystyle {\mathcal L} \bigl(g(t)\bigr) = e^{-a s} F(s).$

Proof. Let $ 0 \leq t < a$ . Then $ U_a(t) = 0$ and so, $ U_a(t) f(t-a) = 0 = g(t).$
If $ t \geq a$ , then $ U_a(t) = 1$ and $ U_a(t) f(t-a) = f(t-a) = g(t).$ Since the functions $ g(t)$ and $ U_a(t) f(t-a)$ take the same value for all $ t \geq 0,$ we have $ g(t) = U_a(t) f(t-a).$ Thus,
$\displaystyle {\mathcal L}(g(t))$ $\displaystyle =$ $\displaystyle \int\limits_0^\infty e^{-st} g(t)dt = \int\limits_a^\infty
e^{-st} f(t-a) dt$  
  $\displaystyle =$ $\displaystyle \int\limits_0^\infty e^{-s(t+a)} f(t) dt
= e^{-as} \int\limits_0^\infty e^{-st} f(t) dt$  
  $\displaystyle =$ $\displaystyle e^{-as} F(s).$  

height6pt width 6pt depth 0pt

EXAMPLE 10.3.20   Find $ {\mathcal L}^{-1} \left(\frac{e^{-5s}}{s^2 - 4 s -
5}\right).$
Solution: Let $ G(s) = \frac{e^{-5s}}{s^2 - 4 s - 5}= e^{-5 s} F(s),$ with $ F(s) =
\frac{1}{s^2 - 4 s - 5}.$ Since $ s^2 - 4 s - 5 =
(s-2)^2 - 3^2$

$\displaystyle {\mathcal L}^{-1}(F(s)) = {\mathcal
L}^{-1}\left(\frac{1}{3} \cdot \frac{3}{(s-2)^2 - 3^2} \right)=
\frac{1}{3} \sinh (3 t) e^{2t}.$

Hence, by Lemma 10.3.19

$\displaystyle {\mathcal L}^{-1}(G(s)) = \displaystyle\frac{1}{3} \; U_5(t)
\sinh\bigl( 3(t-5)\bigr) e^{2(t-5)}. $

EXAMPLE 10.3.21   Find $ {\mathcal L}(f(t))$ , where $ f(t) = \left\{\begin{array}{ll}
0 & t < 2 \pi \\ t \cos t & t > 2 \pi. \end{array}\right.$
Solution: Note that

$\displaystyle f(t) = \left\{\begin{array}{ll}
0 & t < 2 \pi \\ (t- 2 \pi) \cos (t- 2 \pi) + 2 \pi \cos (t - 2 \pi) &
t > 2 \pi. \end{array}\right.$

Thus, $ {\mathcal L}(f(t))= \displaystyle e^{- 2 \pi s}
\left( \frac{s^2 -1}{(s^2+ 1)^2} + 2 \pi \frac{s}{s^2 + 1}\right)$

Note: To be filled by a graph

A K Lal 2007-09-12