Inverse Transforms of Rational Functions

Let $ F(s)$ be a rational function of $ s$ . We give a few examples to explain the methods for calculating the inverse Laplace transform of $ F(s).$

EXAMPLE 10.3.16  
  1. DENOMINATOR OF MATHEND000# HAS DISTINCT REAL ROOTS:

    $\displaystyle {\mbox{If }}\;\; F(s) = \frac{(s+1)(s+3)}{s(s+2)(s+8)} \;\; {\mbox{ find }}
f(t).$


    Solution: $ F(s) = \displaystyle\frac{3}{16 s} +
\frac{1}{ 12 (s + 2)} + \frac{35}{ 48 (s+8)}.$ Thus,

    $ f(t) = \displaystyle\frac{3}{16} + \frac{1}{12} e^{-2t}+
\frac{35 }{48} e^{-8t}.$

  2. DENOMINATOR OF MATHEND000# HAS DISTINCT COMPLEX ROOTS:

    $\displaystyle {\mbox{ If }} \;\; F(s) = \frac{4s+3 }{s^2 + 2 s + 5}
\;\; {\mbox{ find }} \;\; f(t).$


    Solution: $ F(s) = \displaystyle 4 \frac{s+1}{(s+1)^2 + 2^2} - \frac{1}{2} \cdot \frac{2}{ (s+1)^2 + 2^2}.$ Thus,

    $ f(t) = \displaystyle 4 e^{-t} \cos (2 t) - \frac{1}{2} e^{-t} \sin (2t).$

  3. DENOMINATOR OF MATHEND000# HAS REPEATED REAL ROOTS:

    $\displaystyle {\mbox{ If }} \;\; F(s) = \frac{3s+4}{(s+1)(s^2 + 4 s + 4)} \;\;
{\mbox{ find }} \;\; f(t).$


    Solution: Here,

    $\displaystyle F(s) = \frac{3s+4}{(s+1)(s^2 + 4 s + 4)} = \frac{3s+4}{(s+1)(s+2)^2} =
\frac{a}{s+1} + \frac{b}{s+2} + \frac{c}{(s+2)^2}.$

    Solving for $ a, b$ and $ c$ , we get $ F(s) = \frac{1}{s+1} - \frac{1}{s+2} +
\frac{2}{ (s+2)^2} = \frac{1}{s+1} - \frac{1}{s+2} + 2
\frac{d}{ds}
\left( - \frac{1}{ (s+2)}\right).$ Thus, $ f(t) = e^{-t} - e^{-2t} + 2 te^{-2t}.$



A K Lal 2007-09-12