Limiting Theorems

The following two theorems give us the behaviour of the function $ f(t)$ when $ t \longrightarrow 0^+$ and when $ t \longrightarrow
\infty$ .

THEOREM 10.4.1 (First Limit Theorem)   Suppose $ {\mathcal L}(f(t))$ exists. Then

$\displaystyle \lim_{t \longrightarrow 0^+} f(t) = \lim_{s \longrightarrow \infty} s F(s).$

Proof. We know $ s F(s) - f(0) = {\mathcal L} \left( f^\prime(t)
\right).$ Therefore
$\displaystyle \lim_{s \longrightarrow \infty} s F(s)$ $\displaystyle =$ $\displaystyle f(0) +
\lim_{s \longrightarrow \infty} \int_0^\infty e^{-st} f^\prime(t)
dt$  
  $\displaystyle =$ $\displaystyle f(0) + \int_0^\infty \lim_{s \longrightarrow \infty}
e^{-st} f^\prime(t) dt = f(0).$  

as $ \lim\limits_{s \longrightarrow \infty} e^{-st} = 0.$ height6pt width 6pt depth 0pt

EXAMPLE 10.4.2  
  1. For $ t \geq 0,$ let $ Y(s) = {\mathcal L}(y(t)) = a (1 + s^2)^{-1/2}. $ Determine $ a$ such that $ y(0) = 1.$
    Solution: Theorem 10.4.1 implies
    $ 1 = \displaystyle \lim\limits_{s \longrightarrow \infty} s Y(s) =
\lim\limits...
... \lim\limits_{s \longrightarrow \infty} \frac{a}{ (\frac{1}{s^2}
+ 1)^{1/2} }.$ Thus, $ a = 1.$

  2. If $ F(s) = \displaystyle\frac{(s+1)(s+3)}{s(s+2)(s+8)}$ find $ f(0^+).$
    Solution: Theorem 10.4.1 implies

    $\displaystyle f(0^+) = \lim_{s \longrightarrow \infty} s F(s) =
\lim_{s \longrightarrow \infty} s \cdot
\frac{(s+1)(s+3)}{s(s+2)(s+8)} = 1.$

On similar lines, one has the following theorem. But this theorem is valid only when $ f(t)$ is bounded as $ t$ approaches infinity.

THEOREM 10.4.3 (Second Limit Theorem)   Suppose $ {\mathcal L}(f(t))$ exists. Then

$\displaystyle \lim_{t \longrightarrow \infty} f(t) = \lim_{s \longrightarrow 0} s F(s)$

provided that $ s F(s)$ converges to a finite limit as $ s$ tends to 0 .

Proof.
$\displaystyle \lim_{s \longrightarrow 0} s F(s)$ $\displaystyle =$ $\displaystyle f(0) +
\lim_{s \longrightarrow 0} \int_0^\infty e^{-st} f^\prime(t) dt$  
  $\displaystyle =$ $\displaystyle f(0) + \lim_{s \longrightarrow 0} \lim_{t \longrightarrow \infty}
\int_0^t e^{-s \tau} f^\prime(\tau) d \tau$  
  $\displaystyle =$ $\displaystyle f(0) + \lim_{t \longrightarrow \infty} \int_0^t \lim_{s
\longrightarrow 0} e^{-s \tau} f^\prime(\tau) d\tau = \lim_{t
\longrightarrow \infty} f(t).$  

height6pt width 6pt depth 0pt

EXAMPLE 10.4.4   If $ F(s) = \displaystyle\frac{2(s+3)}{s(s+2)(s+8)}$ find $ \displaystyle \lim_{t \longrightarrow \infty} f(t).$
Solution: From Theorem 10.4.3, we have

$\displaystyle \lim_{t \longrightarrow \infty} f(t) = \lim_{s \longrightarrow 0} s F(s)$ $\displaystyle =$ $\displaystyle \lim_{s \longrightarrow 0} s
\cdot \frac{2(s+3)}{s(s+2)(s+8)} = \frac{6}{16} = \frac{3}{8}.$  

We now generalise the lemma on Laplace transform of an integral as convolution theorem.

DEFINITION 10.4.5 (Convolution of Functions)   Let $ f(t)$ and $ g(t)$ be two smooth functions. The convolution, $ f \star g,$ is a function defined by

$\displaystyle (f\star g) (t) = \int_0^t f(\tau) g( t - \tau) d \tau.$

Check that
  1. $ (f\star g)(t) = g\star f(t).$
  2. If $ f(t) = \cos (t)$ then $ (f\star f)(t) = \displaystyle\frac{t \cos (t) + \sin (t)}{2}.$

THEOREM 10.4.6 (Convolution Theorem)   If $ F(s) = {\mathcal L}(f(t))$ and $ G(s) = {\mathcal L}(g(t))$ then

$\displaystyle {\mathcal L}\left[\int_0^t f(\tau) g(t - \tau) d\tau \right] =
F(s) \cdot G(s).$

Remark 10.4.7   Let $ g(t) = 1$ for all $ t \geq 0.$ Then we know that $ {\mathcal L}(g(t))
= G(s) = \displaystyle\frac{1}{s}.$ Thus, the Convolution Theorem 10.4.6 reduces to the Integral Lemma 10.3.12.

A K Lal 2007-09-12