Wronskian

In this subsection, we discuss the linear independence or dependence of two solutions of Equation (8.2.1).

DEFINITION 8.2.2 (Wronskian)   Let $ y_1$ and $ y_2$ be two real valued continuously differentiable function on an interval $ I \subset {\mathbb{R}}.$ For $ x \in I,$ define
$\displaystyle W(y_1, y_2)$ $\displaystyle :=$ $\displaystyle \begin{vmatrix}y_1 & y_1^\prime \\
y_2 & y_2^\prime \end{vmatrix}$  
  $\displaystyle =$ $\displaystyle y_1 y_2^\prime
- y_1^\prime y_2.$  

$ W$ is called the Wronskian of $ y_1$ and $ y_2.$

EXAMPLE 8.2.3  
  1. Let $ y_1 = \cos x$ and $ y_2 = \sin x, \; x\in I \subset {\mathbb{R}}.$ Then

    $\displaystyle W(y_1, y_2) = \begin{vmatrix}\sin x & \cos x \\  \cos x & - \sin x \end{vmatrix} \equiv -1 \;\;{\mbox{ for all }} \;\; x \in I.$ (8.2.2)

    Hence $ \{\cos x, \sin x \}$ is a linearly independent set.
  2. Let $ y_1 = x^2 \vert x\vert, $ and $ y_2 = x^3$ for $ x \in (-1, 1).$ Let us now compute $ y_1^\prime$ and $ y_2^\prime.$ From analysis, we know that $ y_1$ is differentiable at $ x = 0$ and

    $\displaystyle y_1 (x ) = - 3 x^2 \; {\mbox{ if }} \; x < 0 \;\; {\mbox{ and }}
y_1 (x ) = 3 x^2 \; {\mbox{ if }} \; x \ge 0.$

    Therefore, for $ x \geq 0,$

    $\displaystyle W(y_1, y_2) = \begin{vmatrix}y_1 & y_1^\prime \\
y_2 & y_2^\prime \end{vmatrix} = \begin{vmatrix}x^3 & 3 x^2 \\
x^3 & 3 x^2 \end{vmatrix} = 0$

    and for $ x < 0,$

    $\displaystyle W(y_1, y_2) = \begin{vmatrix}y_1 & y_1^\prime \\
y_2 & y_2^\pri...
...nd{vmatrix} = \begin{vmatrix}-x^3 & - 3 x^2 \\
x^3 & 3 x^2 \end{vmatrix} = 0.$

    That is, for all $ x \in (-1, 1),$ $ \; \; W(y_1, y_2) = 0.$

    It is also easy to note that $ y_1, y_2$ are linearly independent on $ (-1, 1).$ In fact,they are linearly independent on any interval $ (a, b)$ containing $ 0.$

Given two solutions $ y_1$ and $ y_2$ of Equation (8.2.1), we have a characterisation for $ y_1$ and $ y_2$ to be linearly independent.

THEOREM 8.2.4   Let $ I \subset {\mathbb{R}}$ be an interval. Let $ y_1$ and $ y_2$ be two solutions of Equation (8.2.1). Fix a point $ x_0 \in I.$ Then for any $ x \in I,$

$\displaystyle W(y_1, y_2) = W(y_1, y_2)(x_0) \exp(- \int_{x_0}^x q(s) d s).$ (8.2.3)

Consequently,

$\displaystyle W(y_1, y_2)(x_0) \neq 0
\Longleftrightarrow W(y_1, y_2) \neq 0 \;\; {\mbox{ for all }}
\;\; x \in I.$

Proof. First note that, for any $ x \in I,$

$\displaystyle W(y_1, y_2) = y_1 y_2^\prime - y_1^\prime y_2.$

So
$\displaystyle \frac{d}{dx} W(y_1, y_2)$ $\displaystyle =$ $\displaystyle y_1 y_2^{\prime\prime} -
y_1^{\prime\prime} y_2$ (8.2.4)
  $\displaystyle =$ $\displaystyle y_1 \left( - q(x) y_2^\prime
- r(x) y_2 \right) - \left( - q(x) y_1^\prime
- r(x) y_1 \right) y_2$ (8.2.5)
  $\displaystyle =$ $\displaystyle q(x) \bigl( y_1^\prime y_2 -
y_1 y_2^\prime \bigr)$ (8.2.6)
  $\displaystyle =$ $\displaystyle - q(x) W(y_1, y_2).$ (8.2.7)

So, we have

$\displaystyle W(y_1, y_2) = W(y_1, y_2)(x_0) \;
\exp\bigl(- \int_{x_0}^x q(s) ds\bigr).$

This completes the proof of the first part.

The second part follows the moment we note that the exponential function does not vanish. Alternatively, $ W(y_1, y_2)$ satisfies a first order linear homogeneous equation and therefore

$\displaystyle W(y_1, y_2) \equiv 0 \;\;
{\mbox{ if and only if }} \; W(y_1, y_2)(x_0) = 0.$

height6pt width 6pt depth 0pt

Remark 8.2.5  
  1. If the Wronskian $ W(y_1, y_2)$ of two solutions $ y_1, y_2$ of (8.2.1) vanish at a point $ x_0 \in I,$ then $ W(y_1, y_2)$ is identically zero on $ I.$
  2. If any two solutions $ y_1, y_2$ of Equation (8.2.1) are linearly dependent (on $ I$ ), then $ W(y_1, y_2) \equiv 0$ on $ I.$

THEOREM 8.2.6   Let $ y_1$ and $ y_2$ be any two solutions of Equation (8.2.1). Let $ x_0 \in I$ be arbitrary. Then $ y_1$ and $ y_2$ are linearly independent on $ I$ if and only if $ W(y_1, y_2)(x_0) \neq 0.$

Proof. Let $ y_1, y_2$ be linearly independent on $ I.$
To show: $ W(y_1, y_2)(x_0) \neq 0.$

Suppose not. Then $ W(y_1, y_2)(x_0) = 0.$ So, by Theorem 2.5.1 the equations

$\displaystyle c_1 y_1(x_0) + c_2 y_2(x_0) = 0 \;\; {\mbox{ and }} \;\; c_1 y_1^\prime(x_0) + c_2 y_2^\prime(x_0) = 0$ (8.2.8)

admits a non-zero solution $ d_1, d_2.$ (as $ 0 = W(y_1, y_2)(x_0) = y_1(x_0) y_2^\prime(x_0) -
y_1^\prime(x_0) y_2(x_0).$ )

Let $ y = d_1 y_1 + d_2 y_2.$ Note that Equation (8.2.8) now implies

$\displaystyle y(x_0) = 0 \; {\mbox{ and }} \; y^\prime(x_0) = 0.$

Therefore, by Picard's Theorem on existence and uniqueness of solutions (see Theorem 8.1.9), the solution $ y \equiv 0$ on $ I.$ That is, $ d_1 y_1 + d_2 y_2 \equiv 0$ for all $ \; x\in I$ with $ \vert d_1\vert + \vert d_2\vert \neq 0.$ That is, $ y_1, y_2$ is linearly dependent on $ I.$ A contradiction. Therefore, $ W(y_1, y_2)(x_0) \neq 0.$ This proves the first part.

Suppose that $ W(y_1, y_2)(x_0) \neq 0$ for some $ x_0 \in I.$ Therefore, by Theorem 8.2.4, $ W(y_1, y_2) \neq 0$ for all $ x \in I.$ Suppose that $ c_1 y_1(x) + c_2 y_2(x) = 0$ for all $ x \in I$ . Therefore, $ c_1 y_1^\prime(x) + c_2 y_2^\prime(x) = 0 $ for all $ x \in I$ . Since $ x_0 \in I,$ in particular, we consider the linear system of equations

$\displaystyle c_1 y_1(x_0) + c_2 y_2(x_0) = 0 \; {\mbox{ and }} \; c_1 y_1^\prime(x_0) + c_2 y_2^\prime(x_0) = 0.$ (8.2.9)

But then by using Theorem 2.5.1 and the condition $ W(y_1, y_2)(x_0) \neq 0,$ the only solution of the linear system (8.2.9) is $ c_1 = c_2 = 0.$ So, by Definition 8.1.8, $ y_1, y_2$ are linearly independent. height6pt width 6pt depth 0pt

Remark 8.2.7   Recall the following from Example 2:
  1. The interval $ I = (-1, 1).$
  2. $ y_1 = x^2 \vert x\vert, \; y_2 = x^3$ and $ W(y_1, y_2) \equiv 0$ for all $ x \in I.$
  3. The functions $ y_1$ and $ y_2$ are linearly independent.
This example tells us that Theorem 8.2.6 may not hold if $ y_1$ and $ y_2$ are not solutions of Equation (8.2.1) but are just some arbitrary functions on $ (-1, 1).$

The following corollary is a consequence of Theorem 8.2.6.

COROLLARY 8.2.8   Let $ y_1, y_2$ be two linearly independent solutions of Equation (8.2.1). Let $ y$ be any solution of Equation (8.2.1). Then there exist unique real numbers $ d_1, d_2$ such that

$\displaystyle y = d_1 y_1 + d_2 y_2 \; {\mbox{ on }} \; I.$

Proof. Let $ x_0 \in I.$ Let $ y(x_0) = a, \; y^\prime(x_0) = b.$ Here $ a$ and $ b$ are known since the solution $ y$ is given. Also for any $ x_0 \in I,$ by Theorem 8.2.6, $ \; W(y_1, y_2)(x_0) \neq 0$ as $ y_1, y_2$ are linearly independent solutions of Equation (8.2.1). Therefore by Theorem 2.5.1, the system of linear equations

$\displaystyle c_1 y_1(x_0) + c_2 y_2(x_0) = a \; {\mbox{ and }} \; c_1 y_1^\prime(x_0) + c_2 y_2^\prime(x_0) = b$ (8.2.10)

has a unique solution $ d_1, d_2.$
Define $ \zeta(x) = d_1 y_1 + d_2 y_2$ for $ x \in I.$ Note that $ \zeta$ is a solution of Equation (8.2.1) with $ \zeta(x_0) = a$ and $ \zeta^\prime(x_0) = b.$ Hence, by Picard's Theorem on existence and uniqueness (see Theorem 8.1.9), $ \zeta = y$ for all $ x \in I.$ That is, $ y = d_1 y_1 + d_2 y_2.$ height6pt width 6pt depth 0pt

EXERCISE 8.2.9  
  1. Let $ y_1$ and $ y_2$ be any two linearly independent solutions of $ y^{\prime\prime} + a(x) y = 0.$ Find $ W(y_1, y_2).$
  2. Let $ y_1$ and $ y_2$ be any two linearly independent solutions of

    $\displaystyle y^{\prime\prime} + a(x) y^\prime+ b(x) y = 0, \; x \in I.$

    Show that $ y_1$ and $ y_2$ cannot vanish at any $ x = x_0 \in I.$
  3. Show that there is no equation of the type

    $\displaystyle y^{\prime\prime} + a(x) y^\prime+ b(x) y = 0, \; x \in [0, 2 \pi]$

    admiting $ y_1 = \sin x$ and $ y_2 = x - \pi$ as its solutions; where $ a(x) $ and $ b(x)$ are any continuous functions on $ [0, 2\pi].$ [Hint: Use Exercise 8.2.9.2.]

A K Lal 2007-09-12