Main Theorem

THEOREM 2.5.1   [Existence and Non-existence] Consider a linear system $ A {\mathbf x}= {\mathbf b},$ where $ A$ is a $ m \times n$ matrix, and $ \; {\mathbf x}, \; {\mathbf b}$ are vectors with orders $ n \times 1,$ and $ m \times 1,$ respectively. Suppose $ {\mbox{rank }}(A) = r$ and $ {\mbox{rank}} ([A \; \;{\mathbf b}]) = r_a.$ Then exactly one of the following statement holds:
  1. if $ \; r_a = r < n,$ the set of solutions of the linear system is an infinite set and has the form

    $\displaystyle \{ {\mathbf u}_0 + k_1 {\mathbf u}_1 + k_2 {\mathbf u}_2 + \cdots...
...n-r} {\mathbf u}_{n-r} \; : \;\;
k_i \in {\mathbb{R}}, \; 1 \leq i \leq n-r \},$

    where $ {\mathbf u}_0, {\mathbf u}_1,
\ldots, {\mathbf u}_{n-r}$ are $ n \times 1$ vectors satisfying $ A {\mathbf u}_0 = {\mathbf b}$ and $ A {\mathbf u}_i = {\mathbf 0}$ for $ 1 \leq i \leq n-r.$
  2. if $ \; r_a = r = n,$ the solution set of the linear system has a unique $ n \times 1$ vector $ {\mathbf x}_0$ satisfying $ A {\mathbf x}_0 = {\mathbf b}.$
  3. If $ \; r < r_a,$ the linear system has no solution.

Remark 2.5.2   Let $ A$ be an $ m \times n$ matrix and consider the linear system $ A {\mathbf x}= {\mathbf b}.$ Then by Theorem 2.5.1, we see that the linear system $ A {\mathbf x}= {\mathbf b}$ is consistent if and only if

$\displaystyle {\mbox{rank }}(A) = {\mbox{rank}} ([A \; \;{\mathbf b}]).$

The following corollary of Theorem 2.5.1 is a very important result about the homogeneous linear system $ A {\mathbf x}= {\mathbf 0}.$

COROLLARY 2.5.3   Let $ A$ be an $ m \times n$ matrix. Then the homogeneous system $ A {\mathbf x}= {\mathbf 0}$ has a non-trivial solution if and only if rank$ (A) < n.$

Proof. Suppose the system $ A {\mathbf x}= {\mathbf 0}$ has a non-trivial solution, $ {\mathbf x}_0.$ That is, $ A {\mathbf x}_0 = {\mathbf 0}$ and $ {\mathbf x}_0 \neq {\mathbf 0}.$ Under this assumption, we need to show that $ {\mbox{rank}} (A) < n.$ On the contrary, assume that rank$ (A) = n.$ So,

$\displaystyle n = {\mbox{rank}}(A) = {\mbox{rank}} \bigl([A \;\; {\mathbf 0}]\bigr) = r_a.$

Also $ A {\mathbf 0}= {\mathbf 0}$ implies that $ {\mathbf 0}$ is a solution of the linear system $ A {\mathbf x}= {\mathbf 0}.$ Hence, by the uniqueness of the solution under the condition $ r = r_a = n$ (see Theorem 2.5.1), we get $ {\mathbf x}_0 = {\mathbf 0}.$ A contradiction to the fact that $ {\mathbf x}_0$ was a given non-trivial solution.

Now, let us assume that rank$ (A) < n.$ Then

$\displaystyle r_a = {\mbox{rank}} \bigl(
[A \;\; {\mathbf 0}] \bigr) = {\mbox{rank}} (A) < n.$

So, by Theorem 2.5.1, the solution set of the linear system $ A {\mathbf x}= {\mathbf 0}$ has infinite number of vectors $ {\mathbf x}$ satisfying $ A {\mathbf x}= {\mathbf 0}.$ From this infinite set, we can choose any vector $ {\mathbf x}_0$ that is different from $ {\mathbf 0}.$ Thus, we have a solution $ {\mathbf x}_0 \neq {\mathbf 0}.$ That is, we have obtained a non-trivial solution $ {\mathbf x}_0.$ height6pt width 6pt depth 0pt

We now state another important result whose proof is immediate from Theorem 2.5.1 and Corollary 2.5.3.

PROPOSITION 2.5.4   Consider the linear system $ A {\mathbf x}= {\mathbf b}.$ Then the two statements given below cannot hold together.
  1. The system $ A {\mathbf x}= {\mathbf b}$ has a unique solution for every $ {\mathbf b}.$
  2. The system $ A {\mathbf x}= {\mathbf 0}$ has a non-trivial solution.

Remark 2.5.5  
  1. Suppose $ {\mathbf x}_1, {\mathbf x}_2$ are two solutions of $ A {\mathbf x}= {\mathbf 0}.$ Then $ k_1 {\mathbf x}_1 + k_2 {\mathbf x}_2$ is also a solution of $ A {\mathbf x}= {\mathbf 0}$ for any $ k_1, k_2 \in {\mathbb{R}}.$
  2. If $ {\mathbf u}, {\mathbf v}$ are two solutions of $ A {\mathbf x}= {\mathbf b}$ then $ {\mathbf u}- {\mathbf v}$ is a solution of the system $ A {\mathbf x}= {\mathbf 0}.$ That is, $ {\mathbf u}- {\mathbf v}= {\mathbf x}_h$ for some solution $ {\mathbf x}_h$ of $ A {\mathbf x}= {\mathbf 0}.$ That is, any two solutions of $ A {\mathbf x}= {\mathbf b}$ differ by a solution of the associated homogeneous system $ A {\mathbf x}= {\mathbf 0}.$

    In conclusion, for $ {\mathbf b}\neq {\mathbf 0},$ the set of solutions of the system $ A {\mathbf x}= {\mathbf b}$ is of the form, $ \{{\mathbf x}_0 + {\mathbf x}_h\};$ where $ {\mathbf x}_0$ is a particular solution of $ A {\mathbf x}= {\mathbf b}$ and $ {\mathbf x}_h$ is a solution $ A {\mathbf x}= {\mathbf 0}.$

EXERCISE 2.5.6  
  1. For what values of $ c$ and $ k$ -the following systems have $ i)$ no solution, $ \;\; ii)$ a unique solution and $ \;\; iii)$ infinite number of solutions.
    1. $ x + y + z = 3, \; \;
x + 2 y + c z = 4, \; \; 2 x + 3 y + 2 c z = k.$
    2. $ x + y + z
= 3, \; x + y + 2 c z = 7, \; x + 2y + 3 c z = k.$
    3. $ x + y +
2z = 3, \; x + 2y + c z = 5, \; x + 2y + 4 z = k.$
    4. $ k x + y
+ z = 1, \; x + k y + z = 1, \; x + y + k z = 1.$
    5. $ x + 2 y -
z = 1, \; 2 x + 3 y + k z = 3, \; x + k y + 3 z = 2.$
    6. $ x - 2
y = 1, \; x - y + k z = 1, \; k y + 4 z = 6.$
  2. Find the condition on $ a, b, c$ so that the linear system

    $\displaystyle x + 2y - 3 z = a, \; 2 x + 6 y - 11 z = b, \; x
- 2 y + 7 z = c$

    is consistent.
  3. Let $ A$ be an $ n \times n$ matrix. If the system $ A^2 {\mathbf x}= {\mathbf 0}$ has a non trivial solution then show that $ A {\mathbf x}= {\mathbf 0}$ also has a non trivial solution.

A K Lal 2007-09-12