System of Linear Equations

THEOREM 15.1.1 (Existence and Non-existence)   Consider a linear system $ A {\mathbf x}= {\mathbf b},$ where $ A$ is a $ m \times n$ matrix, and $ \; {\mathbf x}, \; {\mathbf b}$ are vectors with orders $ n \times 1,$ and $ m \times 1,$ respectively. Suppose $ {\mbox{rank }}(A) = r$ and $ {\mbox{rank}} ([A \; \;{\mathbf b}]) = r_a.$ Then exactly one of the following statement holds:
  1. if $ \; r_a = r < n,$ the set of solutions of the linear system is an infinite set and has the form

    $\displaystyle \{ {\mathbf u}_0 + k_1 {\mathbf u}_1 + k_2 {\mathbf u}_2 + \cdots...
...n-r} {\mathbf u}_{n-r} \; : \;\;
k_i \in {\mathbb{R}}, \; 1 \leq i \leq n-r \},$

    where $ {\mathbf u}_0, {\mathbf u}_1,
\ldots, {\mathbf u}_{n-r}$ are $ n \times 1$ vectors satisfying $ A {\mathbf u}_0 = {\mathbf b}$ and $ A {\mathbf u}_i = {\mathbf 0}$ for $ 1 \leq i \leq n-r.$
  2. if $ \; r_a = r = n,$ the solution set of the linear system has a unique $ n \times 1$ vector $ {\mathbf x}_0$ satisfying $ A {\mathbf x}_0 = {\mathbf 0}.$
  3. If $ \; r < r_a,$ the linear system has no solution.

Proof. Suppose $ [C \; \; {\mathbf d}]$ is the row reduced echelon form of the augmented matrix $ [ A \; \; {\mathbf b}].$ Then by Theorem 2.2.5, the solution set of the linear system $ [C \; \; {\mathbf d}]$ is same as the solution set of the linear system $ [ A \; \; {\mathbf b}].$ So, the proof consists of understanding the solution set of the linear system $ C {\mathbf x}= {\mathbf d}.$
  1. Let $ r = r_a < n.$

    Then $ [C \; \; {\mathbf d}]$ has its first $ r$ rows as the non-zero rows. So, by Remark 2.3.5, the matrix $ C =
[c_{ij}]$ has $ r$ leading columns. Let the leading columns be $ 1 \leq i_1 < i_2 < \cdots < i_r \leq n.$ Then we observe the following:

    1. the entries $ c_{l i_l}$ for $ 1 \leq l \leq r$ are leading terms. That is, for $ 1 \leq l \leq r,$ all entries in the $ i_l^{\mbox{th}}$ column of $ C$ is zero, except the entry $ c_{l i_l}.$ The entry $ c_{l i_l}=1;$
    2. corresponding is each leading column, we have $ r$ BASIC VARIABLES, $ x_{i_1}, x_{i_2}, \ldots, x_{i_r};$
    3. the remaining $ n-r$ columns correspond to the $ n-r$ FREE VARIABLES (see Remark 2.3.5), $ x_{j_1}, x_{j_2}, \ldots,
x_{j_{n-r}}.$ So, the free variables correspond to the columns $ 1\leq j_1 < j_2 < \cdots < j_{n-r}\leq n.$
    For $ 1 \leq l \leq r,$ consider the $ l^{\mbox{th}}$ row of $ [C \;\; {\mathbf d}].$ The entry $ c_{l i_{l}} = 1$ and is the leading term. Also, the first $ r$ rows of the augmented matrix $ [C \; \; {\mathbf d}]$ give rise to the linear equations

    $\displaystyle x_{i_l} + \sum\limits_{k=1}^{n-r} c_{{l} j_k} x_{j_k}= d_l, \;\;
{\mbox{ for }} \;\; 1 \leq l \leq r.$

    These equations can be rewritten as

    $\displaystyle x_{i_l} = d_l - \sum\limits_{k=1}^{n-r} c_{{l} j_k} x_{j_k}= d_l, \;\;
{\mbox{ for }} \;\; 1 \leq l \leq r.$

    Let $ {\mathbf y}^t = (x_{i_1}, \ldots, x_{i_r}, x_{j_1}, \ldots,
x_{j_{n-r}}).$ Then the set of solutions consists of

    $\displaystyle {\mathbf y}= \begin{bmatrix}x_{i_1} \\ \vdots \\ x_{i_r} \\ x_{j_...
...1}^{n-r} c_{{r} j_k} x_{j_k} \\ x_{j_1} \\ \vdots \\ x_{j_{n-r}} \end{bmatrix}.$ (15.1.1)

    As $ x_{j_s}$ for $ 1 \leq s \leq n-r$ are free variables, let us assign arbitrary constants $ k_s \in {\mathbb{R}}$ to $ x_{j_s}.$ That is, for $ 1 \leq s \leq n-r, \;\; x_{j_s} = k_s.$ Then the set of solutions is given by
    $\displaystyle {\mathbf y}$ $\displaystyle =$ $\displaystyle \begin{bmatrix}
d_{1} - \sum\limits_{s=1}^{n-r} c_{{1} j_s} x_{j_...
...m\limits_{s=1}^{n-r} c_{{r} j_s} k_s \\
k_1 \\ \vdots \\ k_{n-r} \end{bmatrix}$  
      $\displaystyle =$ $\displaystyle \begin{bmatrix}d_{1} \\ \vdots \\ d_{r} \\ 0
\\ 0 \\ \vdots \\ 0 ...
...r}} \\ \vdots \\ c_{{r}
j_{n-r}} \\ 0 \\ 0 \\ \vdots \\ 0 \\ - 1 \end{bmatrix}.$  

    Let us write $ {{\mathbf v}_0}^t = (d_1, d_2, \ldots, d_r, 0, \ldots, 0)^t.$ Also, for $ 1 \leq i \leq n-r, $ let $ {\mathbf v}_i$ be the vector associated with $ k_i$ in the above representation of the solution $ {\mathbf y}.$ Observe the following:
    1. if we assign $ k_s = 0, \;$ for $ 1 \leq s \leq n-r,$ we get

      $\displaystyle C {\mathbf v}_0 = C {\mathbf y}= {\mathbf d}.$ (15.1.2)

    2. if we assign $ k_1 = 1$ and $ k_s = 0, \;$ for $ 2 \leq s \leq n-r,$ we get

      $\displaystyle {\mathbf d}= C {\mathbf y}= C ({\mathbf v}_0+ {\mathbf v}_1).$ (15.1.3)

      So, using (14.1.2), we get $ C {\mathbf v}_1 = {\mathbf 0}.$
    3. in general, if we assign $ k_t = 1$ and $ k_s = 0, \;$ for $ 1 \leq s \neq t \leq n-r,$ we get

      $\displaystyle {\mathbf d}= C {\mathbf y}= C ({\mathbf v}_0+ {\mathbf v}_t).$ (15.1.4)

      So, using (14.1.2), we get $ C {\mathbf v}_t = {\mathbf 0}.$
    Note that a rearrangement of the entries of $ {\mathbf y}$ will give us the solution vector $ {\mathbf x}^t = (x_1, x_2, \ldots, x_n)^t.$ Suppose that for $ 0 \leq i \leq n-r,$ the vectors $ {\mathbf u}_i$ 's are obtained by applying the same rearrangement to the entries of $ {\mathbf v}_i$ 's which when applied to $ {\mathbf y}$ gave $ {\mathbf x}.$ Therefore, we have $ C {\mathbf u}_0 = {\mathbf d}$ and for $ 1 \leq i \leq n-r, $ $ C {\mathbf u}_i = {\mathbf 0}.$ Now, using equivalence of the linear system $ A {\mathbf x}= {\mathbf b}$ and $ C {\mathbf x}= {\mathbf d}$ gives

    $\displaystyle A {\mathbf u}_0 = {\mathbf b}\;\; {\mbox{ and for }} \;\; 1 \leq i \leq
n-r, \; A {\mathbf u}_i = {\mathbf 0}.$

    Thus, we have obtained the desired result for the case $ r = r_1 < n.$
  2. $ r= r_a = n, \; m \geq n.$

    Here the first $ n$ rows of the row reduced echelon matrix $ [C \; \; {\mathbf d}]$ are the non-zero rows. Also, the number of columns in $ C$ equals $ n = {\mbox{ rank }}(A) = {\mbox{ rank
}}(C).$ So, by Remark 2.3.5, all the columns of $ C$ are leading columns and all the variables $ x_1, x_2, \ldots, x_n$ are basic variables. Thus, the row reduced echelon form $ [C \; \; {\mathbf d}]$ of $ [A \;\; {\mathbf b}]$ is given by

    $\displaystyle [C \;\; {\mathbf d}] = \begin{bmatrix}I_n &
\tilde{{\mathbf d}}\\ {\mathbf 0}& {\mathbf 0}\end{bmatrix}.$

    Therefore, the solution set of the linear system $ C {\mathbf x}= {\mathbf d}$ is obtained using the equation $ I_n {\mathbf x}= \tilde{{\mathbf d}}.$ This gives us, a solution as $ {\mathbf x}_0 = \tilde{{\mathbf d}}.$ Also, by Theorem 2.3.11, the row reduced form of a given matrix is unique, the solution obtained above is the only solution. That is, the solution set consists of a single vector $ \tilde{{\mathbf d}}.$
  3. $ r < r_a.$

    As $ C$ has $ n$ columns, the row reduced echelon matrix $ [C \; \; {\mathbf d}]$ has $ n+1$ columns. The condition, $ r < r_a $ implies that $ r_a = r+1.$ We now observe the following:

    1. as $ {\mbox{rank}} (C) = r,$ the $ (r+1)$ th row of $ C$ consists of only zeros.
    2. Whereas the condition $ r_a = r+1$ implies that the $ (r+1)^{\mbox{th}}$ row of the matrix $ [C \; \; {\mathbf d}]$ is non-zero.
    Thus, the $ (r+1)^{\mbox{th}}$ row of $ [C \; \; {\mathbf d}]$ is of the form $ (0,\ldots, 0, 1).$ Or in other words, $ {\mathbf d}_{r+1} = 1.$

    Thus, for the equivalent linear system $ C {\mathbf x}= {\mathbf d},$ the $ (r+1)^{\mbox{th}}$ equation is

    $\displaystyle 0 \; x_1 + 0 \; x_2 + \cdots + 0 \; x_n = 1.$

    This linear equation has no solution. Hence, in this case, the linear system $ C {\mathbf x}= {\mathbf d}$ has no solution. Therefore, by Theorem 2.2.5, the linear system $ A {\mathbf x}= {\mathbf b}$ has no solution.
height6pt width 6pt depth 0pt

We now state a corollary whose proof is immediate from previous results.

COROLLARY 15.1.2   Consider the linear system $ A {\mathbf x}= {\mathbf b}.$ Then the two statements given below cannot hold together.
  1. The system $ A {\mathbf x}= {\mathbf b}$ has a unique solution for every $ {\mathbf b}.$
  2. The system $ A {\mathbf x}= {\mathbf 0}$ has a non-trivial solution.

A K Lal 2007-09-12