Miscellaneous Exercises

EXERCISE 1.3.6  
  1. Complete the proofs of Theorems 1.2.5 and 1.2.11.
  2. Let $ {\mathbf x}= \begin{bmatrix}x_1\\ x_2 \end{bmatrix}, \; {\mathbf y}=
\begin{bmatrix}y_1\\ y_2 \end{bmatrix}, \;
A= \begin{bmatrix}1 & 0 \\ 0 & -1 \end{bmatrix}$ and $ B = \begin{bmatrix}\cos \theta & - \sin \theta
\\ \sin \theta & \cos \theta \end{bmatrix}.$ Geometrically interpret $ {\mathbf y}= A {\mathbf x}$ and $ {\mathbf y}= B {\mathbf x}.$
  3. Consider the two coordinate transformations
    $ \;\;\begin{array}{ll} x_1 & = a_{11} y_1 + a_{12} y_2 \\
x_2 & = a_{21} y_1 + a_{22} y_2 \end{array}\; $ and $ \;\;\begin{array}{ll}
y_1 & = b_{11} z_1 + b_{12} z_2 \\ y_2 & = b_{21} z_1 + b_{22} z_2
\end{array}. $
    1. Compose the two transformations to express $ x_1, x_2$ in terms of $ z_1, z_2.$
    2. If $ {\mathbf x}^t = [ x_1, \;x_2 ], \; {\mathbf y}^t = [ y_1, \;y_2 ]$ and $ {\mathbf z}^t = [ z_1, \;z_2]$ then find matrices $ A, B$ and $ C$ such that $ {\mathbf x}= A {\mathbf y}, \; {\mathbf y}= B {\mathbf z}$ and $ {\mathbf x}= C {\mathbf z}.$
    3. Is $ C = A B?$
  4. For a square matrix $ A$ of order $ n,$ we define trace of $ A,$ denoted by $ {\mbox{tr }}(A)$ as

    $\displaystyle {\mbox{tr }}(A) = a_{11} + a_{22} + \cdots a_{nn}.$

    Then for two square matrices, $ A$ and $ B$ of the same order, show the following:
    1. $ {\mbox{tr }}(A + B) = {\mbox{ tr }}(A) + {\mbox{ tr }}(B).$
    2. $ {\mbox{tr }}(A B) = {\mbox{ tr }}(B A).$
  5. Show that, there do not exist matrices $ A$ and $ B$ such that $ AB - B A = c I_n$ for any $ c \neq 0.$
  6. Let $ A$ and $ B$ be two $ m \times n$ matrices and let $ {\mathbf x}$ be an $ n \times 1$ column vector.
    1. Prove that if $ A {\mathbf x}= {\mathbf 0}$ for all $ {\mathbf x},$ then $ A$ is the zero matrix.
    2. Prove that if $ A {\mathbf x}= B {\mathbf x}$ for all $ {\mathbf x},$ then $ A = B.$
  7. Let $ A$ be an $ n \times n$ matrix such that $ A B = B A$ for all $ n \times n$ matrices $ B.$ Show that $ A = \alpha I$ for some $ \alpha \in {\mathbb{R}}.$
  8. Let $ A = \begin{bmatrix}1 & 2
\\ 2 & 1 \\ 3 & 1 \end{bmatrix}.$ Show that there exist infinitely many matrices $ B$ such that $ B A = I_2.$ Also, show that there does not exist any matrix $ C$ such that $ A C = I_3.$
  9. Compute the matrix product $ A B$ using the block matrix multiplication for the matrices $ A = \left[\begin{array}{cc\vert cc} 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right]$ and $ B =
\left[\begin{array}{cc\vert cc} 1 & 2 & 2 & 1 \\ 1 & 1 & 2 & 1 \\
\hline 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{array} \right].$
  10. Let $ A = \begin{bmatrix}P&Q\\ R&S\end{bmatrix}.$ If $ P, Q,
R$ and $ S$ are symmetric, what can you say about $ A?$ Are $ P, Q,
R$ and $ S$ symmetric, when $ A$ is symmetric?
  11. Let $ A=[a_{ij}]$ and $ B= [b_{ij}]$ be two matrices. Suppose $ {\mathbf a}_1, \;
{\mathbf a}_2, \; \ldots, \; {\mathbf a}_n $ are the rows of $ A$ and $ {\mathbf b}_1, \;
{\mathbf b}_2, \; \ldots, \; {\mathbf b}_p$ are the columns of $ B.$ If the product $ A B$ is defined, then show that
    $\displaystyle A B$ $\displaystyle =$ $\displaystyle [A {\mathbf b}_1, \; A {\mathbf b}_2, \; \ldots, \; A {\mathbf b}...
...}
{\mathbf a}_1 B \\ {\mathbf a}_2 B \\ \vdots\\ {\mathbf a}_n B \end{bmatrix}.$  

    [That is, left multiplication by $ A,$ is same as multiplying each column of $ B$ by $ A.$ Similarly, right multiplication by $ B,$ is same as multiplying each row of $ A$ by $ B.$ ]

A K Lal 2007-09-12