Module 2 : Electrostatics
Lecture 11 : Conductors and Dielectric
    Constitutive Relation
  Electric displacement vector $\vec D$helps us to calculate fields in the presence of a dielectric. This is possible only if a relationship between $\vec E$and $\vec D$is known.
  For a weak to moderate field strength, the electric polarization $\vec P$is found to be directly proportional to the external electric field $\vec E$. We define Electric Susceptibility $\chi$through
 
\begin{displaymath}\vec P = \epsilon_0\chi\vec E\end{displaymath}
  so that
 

\begin{eqnarray*}
\vec D &=& \epsilon_0\vec E + \vec P\\
&=& \epsilon_o(1+\chi)\vec E = \epsilon_0\epsilon_r\vec E = \epsilon\vec E
\end{eqnarray*}

  where $\kappa\equiv \epsilon_r = 1+\chi$is called the relative permittivity or the dielectric constant and $\epsilon$is the permittivity of the medium. Using differential form of Gauss's law for $\vec D$, we get
 
\begin{displaymath}\vec\nabla\cdot\vec E = \frac{1}{\epsilon}\vec\nabla\cdot\vec D =
\frac{\rho_f}{\epsilon}\end{displaymath}
 
Thus the electric field produced in the medium has the same form as that in free space, except that the field strength is reduced by a factor equal to the dielectric constant $\kappa$.
   
16