Corollary 12.2:

If X is a topological group with unit element $ e$ then $ \pi_1(X,e)$ is abelian. Moreover, if $ \gamma_1,\; \gamma_2$ are two loops based at $ e$ define the binary operation $ \circ$ on $ \pi_1(X,e)$ by3

$\displaystyle [\gamma_1] \circ [\gamma_2] = [\gamma_1(t) \cdot \gamma_2(t)]
$

where $ \gamma_1(t)\cdot\gamma_2(t)$ denotes the group multiplication in $ X.$ Then

$\displaystyle [\gamma_1] \circ [ \gamma_2 ]=[\gamma_1] [ \gamma_2 ],
$

the right hand side being the product in $ \pi_1(X,e)$. In other words, $ \gamma_1(t) \cdot \gamma_2(t) \sim \gamma_1 \ast \gamma_2$.

nisha 2012-03-20