Proof:

Let $ \bar{e}$ denote the homotopy class of the constant loop based at $ e.$ We first show that the operation $ \circ$ is well defined. If $ \gamma_1^\prime \sim \gamma_1^{\prime \prime}$ and $ \gamma_2^\prime \sim \gamma_2^{\prime \prime}$ via the respective homotopies $ F, G : I \times I \longrightarrow X$, it is easily checked that the map $ F \cdot G : [0, 1]\times [0, 1]\longrightarrow X$ given by

$\displaystyle F\cdot G (s, t) = F(s, t)\cdot G(s, t),
$

the product on the right denoting with group multiplication in $ X$, is a homotopy between $ \gamma_1^\prime(t) \gamma_2^\prime(t)$ and $ \gamma_1^{\prime \prime}(t) \gamma_2^{\prime \prime}(t)$. We conclude that $ \circ$ is a well defined binary operation on $ \pi_1(X,e)$ with a two sided unit $ {\bar e}$. Clearly, $ \bar{e}$ is a common two sided unit element for both binary operations on $ \pi_1(X,e)$. To invoke the lemma we show that the two binary operations are mutually distributive. Let $ \gamma_1^\prime, \gamma_2^\prime \gamma_1^{\prime \prime}, \gamma_2^{\prime \prime}$ be loops based at $ e$

$\displaystyle (\;[\gamma_1^\prime][ \gamma_1^{\prime \prime}]\;) \circ (\; [\ga...
...\prime \prime})(t) \cdot (\gamma_2^\prime \ast \gamma_2^{\prime \prime})(t)\;]
$

We first verify through direct calculation that $ (\gamma_1^\prime \ast \gamma_1^{\prime \prime}) \cdot (\gamma_2^\prime \ast \g...
...\gamma_2^\prime) \ast (\gamma_1^{\prime \prime} \cdot \gamma_2^{\prime \prime})$. Well,
$\displaystyle (\gamma_1^\prime \ast \gamma_1^{\prime \prime})(t) \cdot (\gamma_2^\prime \ast \gamma_2^{\prime \prime})(t)$ $\displaystyle =$ $\displaystyle \gamma_1^{\prime}(2t) \gamma_2^{\prime}(2t), \phantom{XXXX}$ if $\displaystyle 0\leq t \leq \frac{1}{2}$  
  $\displaystyle =$ $\displaystyle \gamma_1^{\prime \prime}(2t-1)\gamma_2^{\prime \prime}(2t-1),$    if $\displaystyle \frac{1}{2} \leq t \leq 1.$  
% latex2html id marker 25647
$\displaystyle \therefore \quad [(\gamma_1^\prime ...
...^{\prime \prime})(t) \cdot (\gamma_2^\prime \ast \gamma_2^{\prime \prime})(t) ]$ $\displaystyle =$ $\displaystyle [\gamma_1^\prime(t) \cdot \gamma_2^\prime(t)] [\gamma_1^{\prime \prime}(t) \cdot \gamma_2^{\prime \prime}(t)]$  

So finally

$\displaystyle ([\gamma_1^\prime][\gamma_1^{\prime \prime}]) \circ ([\gamma_2^\p...
...\gamma_2^\prime])([\gamma_1^{\prime \prime}] \circ [\gamma_2^{\prime \prime}])
$

Thus lemma (12.1) is applicable for the binary operations $ *$ and $ \circ$ and the proof is complete.
nisha 2012-03-20