... points1
These are the common zeros of the pair $ P(x, y)$ and $ Q(x, y)$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... equation2
This means a trajectory (solution curve) starting at a point of $ \Omega$ stays in $ \Omega$ for all times.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... by3
To avoid introducing more notation we are being notationally imprecise. The expression $ \gamma_1(t)\cdot\gamma_2(t)$ inside the brackets refers to the map $ t\mapsto \gamma_1(t)\cdot\gamma_2(t)$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... covering4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... path5
The path would have to satisfy some regularity condition such as being piecewise continuously differentiable. However since this is merely supposed to be a motivation we shall brush aside these technicalities.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... calculus6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Dieck7
See also R. Stöcher and H. Zeischang, Algebraische Topologie, B. G. Teubner, Stuttgart (1988) 306-325.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.