Proof:

Denoting the common two sided identity by $ 1$,

$\displaystyle (f \ast g) = (f \ast^\prime 1) \ast (1 \ast^\prime g)
= (f \ast 1) \ast^\prime (1 \ast g)
= f \ast^\prime g
$

which proves (ii). Next we prove commutativity:

$\displaystyle g \ast f = (1 \ast^\prime g) \ast (f \ast^\prime 1)
= (1 \ast f) \ast^\prime (g \ast 1)
= f \ast^\prime g
= f \ast g.
$

Finally, using (ii) we prove associativity:

$\displaystyle (f \ast g) \ast h = (f \ast g) \ast^\prime (1 \ast h)
= (f \ast...
...me 1) \ast (g \ast^\prime h)
= f \ast ( g \ast^\prime h)
= f \ast(g \ast h)
$



nisha 2012-03-20