Lemma 12.1:

Suppose $ S$ is a set on which two binary operations $ \ast$ and $ \ast^\prime$ are defined such that
(a)
Both $ \ast$ and $ \ast^\prime$ have a common two sided unit.
(b)
The binary operations $ \ast$ and $ \ast^\prime$ are mutually distributive. That is,

$\displaystyle (f_1 \ast g_1) \ast^\prime (f_2 \ast g_2) = (f_1 \ast^\prime f_2) \ast (g_1 \ast^\prime g_2),
\quad f_1,\;f_2,\;g_1,\;g_2 \in S.
$

Then,
(i)
both $ \ast$ and $ \ast^\prime$ are associative and commutative.
(ii)
$ f \ast g= f \ast^\prime g$ for all $ f,g \in S.$


nisha 2012-03-20