Some More Special Matrices

DEFINITION 1.3.1  
  1. A matrix $ A$ over $ {\mathbb{R}}$ is called symmetric if $ A^{t} = A$ and skew-symmetric if $ A^{t} = -A.$
  2. A matrix $ A$ is said to be orthogonal if $ A A^t = A^t A = I.$

EXAMPLE 1.3.2  
  1. Let $ A = \begin{bmatrix}1 & 2 & 3 \\ 2 & 4 & -1 \\
3 & -1 & 4 \end{bmatrix}$ and $ B = \begin{bmatrix}0 & 1 & 2 \\ -1 & 0
& -3 \\ -2 & 3 & 0 \end{bmatrix}.$ Then $ A$ is a symmetric matrix and $ B$ is a skew-symmetric matrix.
  2. Let $ A = \begin{bmatrix}\frac{1}{\sqrt{3}} &\frac{1}{\sqrt{3}}
& \frac{1}{\sqrt{3}}...
...\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & - \frac{2}{ \sqrt{6} } \end{bmatrix}.$ Then $ A$ is an orthogonal matrix.
  3. Let $ A=[a_{ij}]$ be an $ n \times n$ matrix with $ a_{ij} = \begin{cases}1 & {\mbox{ if }} i= j+1 \\ 0 &{\mbox{ otherwise }}
\end{cases}.$ Then $ A^n = {\mathbf 0}$ and $ A^{\ell} \neq {\mathbf 0}$ for $ 1 \leq \ell \leq n-1.$ The matrices $ A$ for which a positive integer $ k$ exists such that $ A^k = {\mathbf 0}$ are called NILPOTENT matrices. The least positive integer $ k$ for which $ A^k = {\mathbf 0}$ is called the ORDER OF NILPOTENCY.
  4. Let $ A = \begin{bmatrix}1 & 0 \\ 0 & 0 \end{bmatrix}.$ Then $ A^2 = A.$ The matrices that satisfy the condition that $ A^2 = A$ are called IDEMPOTENT matrices.

EXERCISE 1.3.3  
  1. Show that for any square matrix $ A,$ $ S = \frac{1}{2} (A+A^{t})$ is symmetric, $ T = \frac{1}{2} (A - A^{t})$ is skew-symmetric, and $ A = S + T.$
  2. Show that the product of two lower triangular matrices is a lower triangular matrix. A similar statement holds for upper triangular matrices.
  3. Let $ A$ and $ B$ be symmetric matrices. Show that $ A B$ is symmetric if and only if $ A B = B
A.$
  4. Show that the diagonal entries of a skew-symmetric matrix are zero.
  5. Let $ A, B$ be skew-symmetric matrices with $ A B = B
A.$ Is the matrix $ A B$ symmetric or skew-symmetric?
  6. Let $ A$ be a symmetric matrix of order $ n$ with $ A^{2} = {\mathbf 0}.$ Is it necessarily true that $ A = {\mathbf 0}?$
  7. Let $ A$ be a nilpotent matrix. Show that there exists a matrix $ B$ such that $ B(I + A) = I = (I+A)B.$



Subsections
A K Lal 2007-09-12