Submatrix of a Matrix

DEFINITION 1.3.4   A matrix obtained by deleting some of the rows and/or columns of a matrix is said to be a submatrix of the given matrix.

For example, if $ A=\begin{bmatrix}1 & 4 & 5 \\ 0 & 1 & 2
\end{bmatrix},$ a few submatrices of $ A$ are

$\displaystyle [ 1 ], [ 2 ],
\begin{bmatrix}1 \\ 0
\end{bmatrix}, [ 1 \; 5 ], \begin{bmatrix}1 & 5 \\ 0 & 2
\end{bmatrix}, \; A.$

But the matrices $ \begin{bmatrix}1& 4\\ 1& 0 \end{bmatrix}$ and $ \begin{bmatrix}1& 4\\ 0& 2 \end{bmatrix}$ are not submatrices of $ A.$ (The reader is advised to give reasons.)



A K Lal 2007-09-12