Inverse of a Matrix

DEFINITION 1.2.13 (Inverse of a Matrix)   Let $ A$ be a square matrix of order $ n.$
  1. A square matrix $ B$ is said to be a LEFT INVERSE of $ A$ if $ B A = I_n.$
  2. A square matrix $ C$ is called a RIGHT INVERSE of $ A,$ if $ A C = I_n.$
  3. A matrix $ A$ is said to be INVERTIBLE (or is said to have an INVERSE) if there exists a matrix $ B$ such that $ A B = B A = I_n.$

LEMMA 1.2.14   Let $ A$ be an $ n \times n$ matrix. Suppose that there exist $ n \times n$ matrices $ B$ and $ C$ such that $ A B = I_n$ and $ C A = I_n,$ then $ B = C.$

Proof. Note that

$\displaystyle C = C I_n = C( A B) = (C A) B = I_n B = B.$

height6pt width 6pt depth 0pt

Remark 1.2.15  
  1. From the above lemma, we observe that if a matrix $ A$ is invertible, then the inverse is unique.
  2. As the inverse of a matrix $ A$ is unique, we denote it by $ A^{-1}.$ That is, $ A A^{-1} = A^{-1} A = I.$

THEOREM 1.2.16   Let $ A$ and $ B$ be two matrices with inverses $ A^{-1}$ and $ B^{-1},$ respectively. Then
  1. $ (A^{-1})^{-1}= A.$
  2. $ ( A B )^{-1} = B^{-1} A^{-1}.$
  3. $ (A^t)^{-1} =
(A^{-1})^t.$

Proof. Proof of Part 1.
By definition $ A A^{-1} = A^{-1} A = I.$ Hence, if we denote $ A^{-1}$ by $ B,$ then we get $ A B = B A = I.$ Thus, the definition, implies $ B^{-1} = A,$ or equivalently $ (A^{-1})^{-1}= A.$

Proof of Part 2.
Verify that $ (A B) (B^{-1} A^{-1}) = I = (B^{-1} A^{-1}) (A B).$

Proof of Part 3.
We know $ A A^{-1} = A^{-1} A = I.$ Taking transpose, we get

$\displaystyle (A A^{-1})^t = (A^{-1} A)^t = I^t \Longleftrightarrow
(A^{-1})^t A^t = A^t (A^{-1})^t = I.$

Hence, by definition $ (A^t)^{-1} =
(A^{-1})^t.$ height6pt width 6pt depth 0pt

EXERCISE 1.2.17  
  1. Let $ A_1, A_2, \ldots, A_r$ be invertible matrices. Prove that the product $ A_1 A_2 \cdots A_r$ is also an invertible matrix.
  2. Let $ A$ be an inveritble matrix. Then prove that $ A$ cannot have a row or column consisting of only zeros.
  3. Let $ A=[a_{ij}]$ be an invertible matrix and let $ p$ be a nonzero real number. Then determine the inverse of the matrix $ B = [p^{i-j} a_{ij}]$ .

A K Lal 2007-09-12