Elementary Matrices

DEFINITION 2.3.13   A square matrix $ E$ of order $ n$ is called an elementary matrix if it is obtained by applying exactly one elementary row operation to the identity matrix, $ I_n.$

Remark 2.3.14   There are three types of elementary matrices.
  1. $ E_{ij}, $ which is obtained by the application of the elementary row operation $ R_{ij}$ to the identity matrix, $ I_n.$ Thus, the $ (k, \ell)^{\mbox{th}}$ entry of $ E_{ij}$ is \begin{displaymath}(E_{ij})_{(k,\ell)} =
\begin{cases}1 & {\mbox{ if }} k=\ell {...
...or }} (k,\ell) = (j,i) \\
0 & {\mbox{ otherwise}} \end{cases}.\end{displaymath}
  2. $ E_k(c), $ which is obtained by the application of the elementary row operation $ R_k(c)$ to the identity matrix, $ I_n.$ The $ (i,j)^{\mbox{th}}$ entry of $ E_k(c)$ is $ (E_k(c))_{(i,j)}= \begin{cases}1 & {\mbox{
if }} i=j {\mbox{ and }}
i \neq k \\ c & {\mbox{ if }} i=j = k \\
0 & {\mbox{ otherwise}} \end{cases}.$
  3. $ E_{ij}(c), $ which is obtained by the application of the elementary row operation $ R_{ij}(c)$ to the identity matrix, $ I_n.$ The $ (k, \ell)^{\mbox{th}}$ entry of $ E_{ij}(c)$ is $ (E_{ij})_{(k,\ell)}\begin{cases}1 & {\mbox{ if }} k=\ell \\
c & {\mbox{ if }} (k,\ell) = (i,j) \\
0 & {\mbox{ otherwise}}
\end{cases}.$

In particular, if we start with a $ 3 \times 3$ identity matrix $ I_3$ , then

$\displaystyle E_{23} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 0 &
1 \\ 0 & 1 & 0 \end{...
... E_{23}(c) = \begin{bmatrix}
1 & 0 & 0 \\ 0 & 1 & c
\\ 0 & 0 & 1 \end{bmatrix}.$

EXAMPLE 2.3.15  
  1. Let $ A = \begin{bmatrix}1 & 2 & 3 & 0 \\ 2 & 0 & 3 &
4\\ 3 & 4 & 5 & 6 \end{bmatrix}.$ Then

    $\displaystyle \begin{bmatrix}1 & 2 & 3 & 0 \\ 2 & 0 & 3 &
4\\ 3 & 4 & 5 & 6 \en...
... \begin{bmatrix}1 & 0 & 0 \\ 0 & 0 &
1 \\ 0 & 1 & 0 \end{bmatrix} A = E_{23} A.$

    That is, interchanging the two rows of the matrix $ A$ is same as multiplying on the left by the corresponding elementary matrix. In other words, we see that the left multiplication of elementary matrices to a matrix results in elementary row operations.
  2. Consider the augmented matrix $ [A \; {\mathbf b}] = \begin{bmatrix}0 & 1 & 1 & 2 \\
2 & 0 & 3 & 5 \\ 1 & 1 & 1 & 3 \end{bmatrix}.$ Then the result of the steps given below is same as the matrix product

    $\displaystyle E_{23}(-1) E_{12}(-1) E_3(1/3) E_{32}(2) E_{23}
E_{21}(-2) E_{13} [A \; {\mathbf b}].$


    $\displaystyle \begin{bmatrix}0 & 1 & 1 & 2 \\ 2 & 0 & 3 & 5 \\ 1 & 1 & 1 & 3
\end{bmatrix}$ $\displaystyle \overrightarrow{R_{13} }$ $\displaystyle \begin{bmatrix}1 & 1 & 1 & 3 \\ 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \e...
...
\begin{bmatrix}1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & -2 & 1 & -1 \end{bmatrix}$  
      $\displaystyle \overrightarrow{R_{32}(2)}$ $\displaystyle \begin{bmatrix}1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 3 & 3 \e...
...)}
\begin{bmatrix}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$  
      $\displaystyle \overrightarrow{R_{23}(-1) }$ $\displaystyle \begin{bmatrix}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$  

Now, consider an $ m \times n$ matrix $ A$ and an elementary matrix $ E$ of order $ n.$ Then multiplying by $ E$ on the right to $ A$ corresponds to applying column transformation on the matrix $ A.$ Therefore, for each elementary matrix, there is a corresponding column transformation. We summarize:

DEFINITION 2.3.16   The column transformations obtained by right multiplication of elementary matrices are called elementary column operations.

EXAMPLE 2.3.17   Let $ A = \begin{bmatrix}1 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 4 & 5 \end{bmatrix}$ and consider the elementary column operation $ {\mathit f}$ which interchanges the second and the third column of $ A.$ Then $ f(A) =
\begin{bmatrix}1 & 3 & 2 \\ 2 & 3 & 0 \\ 3 & 5 & 4 \end{bmatrix} = A
\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 &
1 \\ 0 & 1 & 0 \end{bmatrix} = A E_{23}.$

EXERCISE 2.3.18  
  1. Let $ {\mathit e}$ be an elementary row operation and let $ E = e(I)$ be the corresponding elementary matrix. That is, $ E$ is the matrix obtained from $ I$ by applying the elementary row operation $ e.$ Show that $ e(A) = E A.$
  2. Show that the Gauss elimination method is same as multiplying by a series of elementary matrices on the left to the augmented matrix. Does the Gauss-Jordan method also corresponds to multiplying by elementary matrices on the left? Give reasons.
  3. Let $ A$ and $ B$ be two $ m \times n$ matrices. Then prove that the two matrices $ A, B$ are row-equivalent if and only if $ B = P A,$ where $ P$ is product of elementary matrices. When is this $ P$ unique?
  4. Show that every elementary matrix is invertible. Is the inverse of an elementary matrix, also an elementary matrix?

A K Lal 2007-09-12