Module 1 : Real Numbers, Functions and Sequences
Lecture 2 : Convergent & Bounded Sequences [ Section 2.3 : Bounded Sequences ]
 
2.3.3 Theorem:
  If is convergent then it is bounded.
                                                                                                                   
  Proof:   Let  . Then given ,  say  = 1, there exists such that 
                       
                      
  That means all 's, accept lie in between  - 1 and + 1. Thus, if we define
                            
  Hence,   is bounded.
                                                                                                                                                       Back
   
15