Theorem 33.1:

There exists a bilinear map
$\displaystyle S_p(X)\times S_q(Y) \longrightarrow S_{p+q}(X\times Y)$      
$\displaystyle (\sigma, \tau)\mapsto \sigma\times \tau,\phantom{XXXX}$      

with the following properties
(i)
For zero simplices $ x \in X$, $ y \in Y$ and singular simplices $ \sigma:\Delta_p\longrightarrow X$ and $ \tau:\Delta_q\longrightarrow Y$ the products $ x\times \tau$, $ \sigma\times y$ are already defined above.
(ii)
Naturality: Suppose that $ f:X\longrightarrow X^{\prime}$ and $ g:Y\longrightarrow Y^{\prime}$ are two continuous maps and $ f\times g:X\times Y\longrightarrow X^{\prime}\times Y^{\prime}$ denotes the product map $ (f\times g)(x, y) = (f(x), g(y))$, then

$\displaystyle (f\times g)_{\sharp}(\sigma\times \tau) = f_{\sharp}(\sigma)\times g_{\sharp}(\tau) \eqno(33.1)
$

(iii)
Generalized Leibnitz' rule: If $ \sigma\in S_p(X)$ and $ \tau\in S_q(Y)$ then

$\displaystyle \partial (\sigma\times \tau) = \partial \sigma\times \tau + (-1)^p (\sigma\times \partial \tau) \eqno(33.2)
$



nisha 2012-03-20