The cross product:

This construction lies at the heart of the proof of Kunneth formula which relates the homology groups of $ X\times Y$ in terms of the homologies of $ X$ and $ Y$. The first step would be to relate the singular chain complex of $ X\times Y$ with those of $ X$ and $ Y$. This construction will be carried out naturally. Given a zero simplex $ x \in X$ and a $ q$ simplex $ \sigma: \Delta_q\longrightarrow Y$ in $ Y$, $ x\times \sigma$ denotes the singular $ q$ simplex in $ X\times Y$ given by
$\displaystyle x\times \sigma: \Delta_q\longrightarrow X\times Y$      
$\displaystyle t\mapsto(x, \sigma(t)).\phantom{}$      

Likewise given a $ q$ simplex $ \tau$ in $ X$ and a zero simplex $ y$ in $ Y$, one defines a $ q$ simplex $ \tau\times y$ in $ X\times Y$. For a pair of singular simplices $ \sigma\in \Delta_p(X)$ and $ \tau \in \Delta_q(Y)$ we call $ p+q$ the total degree of the pair $ (\sigma, \tau)$.

nisha 2012-03-20