Theorem 29.3:

(i) For a continuous map $ f : X \longrightarrow Y$, the maps $ f_{\sharp}:S_n(X)\longrightarrow S_n(Y)$ satisfy

$\displaystyle \partial _n\circ f_{\sharp} = f_{\sharp}\circ \partial _n \eqno(29.7)
$

The $ f_{\sharp}$ on the right hand side obviously refers to the map $ S_{n-1}(X)\longrightarrow S_{n-1}(Y)$ and $ \partial _n$ refers to the boundary operator on $ S_n(Y)$ on the left hand side whereas it refers to the boundary operator on $ S_n(X)$ on the right hand side.

(ii) If $ f : X \longrightarrow Y$ and $ g : Y \longrightarrow Z$ are two continuous maps then the maps $ f_{\sharp}:S_n(X)\longrightarrow S_n(Y)$ and $ g_{\sharp}:S_n(Y)\longrightarrow S_n(Z)$ satisfy

$\displaystyle (g\circ f)_{\sharp} = f_{\sharp}\circ g_{\sharp}\eqno(29.8)
$



nisha 2012-03-20