Proof:

We shall only prove (29.7). It suffices to check these on singular simplices. So let $ \sigma:\Delta_n\longrightarrow X$ be a singular $ n$ simplex in $ X$. Using (29.4) we get

$\displaystyle (f_{\sharp}\circ \partial _n)\sigma = f_{\sharp}\Big(
\sum_{i = 0...
...gma) = \partial _n(f_{\sharp}(\sigma)) =
(\partial _n\circ f_{\sharp})\sigma.
$



nisha 2012-03-20