Theorem 19.1:

Let $ p : \widetilde X \longrightarrow X$ be a covering projection and $ \phi$ be a deck transformation. Then

(i) $ \phi$ is uniquely determined by its value at one point of $ \widetilde X$

(ii) $ \phi(\tilde x_0) \in p^{-1}(x_0)$ whenever $ \tilde x_0 \in x_0$.

(iii) If $ \phi(\tilde x_1) = \tilde x_2$, where $ \tilde x_1, \tilde x_2 \in p^{-1}(x_0)$ then

$\displaystyle p_{*}\pi_1(\widetilde X, \tilde x_1) = p_{*}\pi_1(\widetilde X, \tilde x_2) \eqno(19.1)
$

(iv) Conversely if (1) holds then there exists a unique deck transformation $ \phi$ such that $ \phi(\tilde x_1) = \tilde x_2$


nisha 2012-03-20