Examples 19.1:

(i) For the covering space ex$ : \mathbb{R} \longrightarrow S^1$ given by ex$ (t) = \exp(2\pi it)$ the deck transformations are the maps

$\displaystyle T_n :\mathbb{R} \longrightarrow \mathbb{R}, \quad T_n(x) = x + n,\quad n\in\mathbb{Z}
$

(ii) For the two sheeted covering $ p : S^n \longrightarrow \mathbb{R}P^n$ the deck transformations are the identity map and the antipodal map.

The following theorem summarizes the most basic properties of the group of deck transformations.


nisha 2012-03-20